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Preface 👋 👋
This course is largely inspired from the following books:
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Press.
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Kruschke, J. K. (2015). Doing Bayesian Data Analysis, Second Edition: A Tutorial with R, JAGS, and Stan.

Academic Press / Elsevier.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data

Analysis, third edition. London: CRC Press.

Lambert, B. (2018). A Student’s Guide to Bayesian Statistics. SAGE Publications Ltd.

Noël, Y. (2015). Psychologie Statistique. EDP Sciences.

Nicenboim, B., Schad, D., & Vasishth, S. (2021). An Introduction to Bayesian Data Analysis for Cognitive

Science. Available .

Code and slides are available at the course’s website: .
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online

https://lnalborczyk.github.io/IBSM2023/
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Objectives
General objectives:

Understand the fundamental concepts of Bayesian statistical modelling.

Be able to understand articles describing Bayesian analyses.

Bonus: realise that the Bayesian approach is more intuitive than the frequentist approach.

Practical objectives:

Be able to carry out a complete analysis (i.e., identifying the appropriate model, writing the

mathematical model, implementing it in R, interpreting and reporting the results) of a simple dataset.
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Planning
Course n°01: Introduction to Bayesian inference, Beta-Binomial model

Course n°02: Introduction to brms, linear regression

Course n°03: Markov Chain Monte Carlo, generalised linear model

Course n°04: Multilevel models, cognitive models
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A matter of interpretation
What is the probability…

Of obtaining an odd number with a fair die?

Of you learning something new during this course?

Do these two questions refer to the same “sort” of probability?
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Classical (or theoretical) interpretation

Pr(odd) = = =
number of favorable issues

total number of possible issues

3

6

1

2

Problem: this definition only applies to situations in which there is a finite number of equiprobable

potential outcomes…

Limitation: what is the probability of raining tomorrow?

Pr(rain) = =
rain

{rain, not-rain}

1

2
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Frequentist (or empirical) interpretation

Where  is the number of occurrences of the event  and  the total number of observations. The

frequentist interpretation postulates that, in the long-run (i.e., when the number of observations

approaches infinity), the relative frequency of an event will converge exactly with what we call

“probability”.

Pr(x) = lim
→∞nt

nx

nt

nx x nt

Consequence: the concept of probability only applies to collectives, not to single events.

7

Ladislas Nalborczyk - IBSM2023



Frequentist (or empirical) interpretation
library(tidyverse)1

2
sample(x = c(0, 1), size = 500, prob = c(0.5, 0.5), replace = TRUE) %>%3
        data.frame() %>%4
        mutate(x = seq_along(.), y = cummean(.) ) %>%5
        ggplot(aes(x = x, y = y) ) +6
        geom_line(lwd = 1) +7
        geom_hline(yintercept = 0.5, lty = 3) +8
        labs(x = "Trial number", y = "Proportion of heads") +9
        ylim(0, 1)10
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Limitations of the frequentist interpretation
Which reference class? What is the probability that I will live until 80 years old? As a man? As a French

person?

What about non-repeatable events? What is the probability of you learning something new during this

course?

The resolution issue: How many observations do we need to get a good approximation of the underlying

probability? A finite class of events of size  can only produce relative frequencies with precision …n 1/n
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Propensionist interpretation
The frequentist (i.e., long-term) properties of objects (e.g., a coin) are caused by the intrinsic physical

properties of the objects. For example, a biased coin will generate a biased relative frequency (and

therefore probability) because of its physical properties. For propensionists, probabilities represent these

intrinsic characteristics, these propensities to generate certain relative frequencies, and not the relative

frequencies themselves.

Consequence: these properties are the properties of individual events… and not of sequences! The

propensionist interpretation therefore allows us to talk about the probability of single events.
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Logical interpretation

There are 10 students in this room

9 wear a green t-shirt

1 wears a red t-shirt

One person is drawn at random…

Conclusion #1: the student drawn wears a t-shirt ✔

Conclusion #2: the student drawn wears a green t-shirt ✗

Conclusion #3: the student selected at random wears a red t-shirt ✗
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Logical interpretation
The logical interpretation of the concept of probability attempts to generalise logic (true/false) to the

probabilistic world. Probability therefore represents the degree of logical support that a conclusion has,

relative to a set of premises ( ; ).Carnap, 1971 Keynes, 1921

Consequence: all probability is conditional.
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Bayesian interpretation
Probability is a measure of the degree of uncertainty. An event that is certain will therefore have a

probability of 1 and an event that is impossible will have a probability of 0.

So to assign equal probabilities to two events is not in any way an assertion that they must

occur equally often in any random experiment […], it is only a formal way of saying I don’t

know ( ).

“
Jaynes, 1986

To talk about probabilities in this context, we no longer need to refer to the limit of occurrence of an

event (frequency).
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Probabilistic interpretations - Summary
Classical interpretation (Laplace, Bernouilli, Leibniz)

Frequentist interpretation (Venn, Reichenbach, von Mises)

Propensionist interpretation (Popper, Miller)

Logical interpretation (Keynes, Carnap)

Bayesian interpretation (Jeffreys, de Finetti, Savage)

For more details, see this article from the Stanford Encyclopedia of Philosophy.
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Probabilistic interpretations - Summary

Epistemic probability

All probabilities are conditional on available

information (e.g., premises or data). Probability is

used as a means of quantifying uncertainty.

Logical interpretation, Bayesian interpretation.

Physical probability

Probabilities depend on a state of the world, on

physical characteristics, and are independent of

available information (or uncertainty).

Classical interpretation, frequentist interpretation.
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Probability axioms ( )
A probability is a numerical value assigned to an event , understood as a possibility belonging to the set

of all possible outcomes .

Kolmogorov, 1933
A

Ω

Probabilities have to conform to the following axioms:

Non-negativity: 

Normalisation: 

Additivity (for mutually exclusive events): 

Pr(A) ≥ 0

Pr(Ω) = 1

Pr( ∪ ) = Pr( ) + Pr( )A1 A2 A1 A2

The last axiom is also known as the sum rule and can be generalised to non-mutually exclusive events:

.Pr( ∪ ) = Pr( ) + Pr( ) − Pr( ∩ )A1 A2 A1 A2 A1 A2
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Sum rule and product rule
Sum rule (for two mutually exclusive events): .

Think about the probability of getting an odd number with a fair die. We may also write it as

.

Pr( ∪ ) = Pr( ) + Pr( ) − Pr( ∩ )A1 A2 A1 A2 A1 A2

Pr(x = 1) + Pr(x = 3) + Pr(x = 5) = 3
6

Product rule (for two independent events): .

Think about the probability of getting two 6s in a row with a fair die. We may also write it as

.

Pr( ∩ ) = Pr( ) × Pr( )A1 A2 A1 A2

Pr(x = 6, y = 6) = × =1
6

1
6

1
36

If you understand and remember these two rules, you already know Bayesian statistics!
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Joint probability
Probability that die  is equal to 2 and die  is equal to 3 is: .x y Pr(x = 2, y = 3) = Pr(y = 3, x = 2) = 1

36
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From the sum rule to marginalisation
With more than one variable, the sum rule tells us how to ignore one. For instance, the probability that

the first die shows 1 is: . This is called marginal because

you can write the cumulative probability in the margin of a joint probability table.

Pr(x = 1) = Pr(x = 1, y ∈ {1, 2, 3, 4, 5, 6}) = 6
36
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From the sum rule to marginalisation
Probability that two dice total 4 is: .Pr(x + y = 4) = 3

36
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Conditional probability
What is the probability that die  equals some value given that the total is 4? For instance, the

probability of die  being equal to 2: .

x

x Pr(x = 2 | x + y = 4) = 1
3
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Conditional probability
This conditional probability can be rewritten: . Note that

is not necessarily equal (and is generally not equal) to .

Pr(x = 2 | x + y = 4) = = =
Pr(x=2,x+y=4)

Pr(x+y=4)
1/36
3/36

1
3

Pr(x | y) Pr(y | x)

For instance: the probability of dying knowing that you have been attacked by a shark is not the same as

the probability of having been attacked by a shark knowing that you are dead ( ).

In the same way, .

confusion of the inverse

p(data | ) ≠ p( | data)0 0
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Deriving Bayes theorem
From Kolmogorov’s axioms and the previous definitions of joint, marginal, and conditional probabilities,

we derive the general version (i.e., not necessarily for independent events) of the product rule:

p(x, y) = p(x | y) p(y) = p(y | x) p(x)

p(y | x) p(x) = p(x | y) p(y)

Then divide each side by :p(x)

p(y | x) =
p(x | y) p(y)

p(x)

p(x | y) =
p(y | x) p(x)

p(y)

If we replace  by  and  by :x hypothesis y data

Pr(hypothesis | data) =
Pr(data | hypothesis) × Pr(hypothesis)

sum of products

24

Ladislas Nalborczyk - IBSM2023



Exercise - Bag of marbles problem ( )
Let’s imagine we have a bag containing 4 marbles. These marbles can be either white or blue. We know

that there are precisely 4 marbles, but we don’t know the number of marbles of each colour.

McElreath, 2020

However, we do know that there are five possibilities (which we consider to be our hypotheses):

⚪ ⚪ ⚪ ⚪

🔵 ⚪ ⚪ ⚪

🔵 🔵 ⚪ ⚪

🔵 🔵 🔵 ⚪

🔵 🔵 🔵 🔵

25

Ladislas Nalborczyk - IBSM2023



Exercise - Bag of marbles problem ( )
The aim is to determine which combination is the most likely, given certain observations. Let’s assume

that we drawn three marbles in a row, with replacement, and we obtained the following sequence: 🔵 ⚪

🔵 .

McElreath, 2020

This sequence represents our data. What inference can we make about the contents of the bag? In

other words, what can we say about the probability of each hypothesis?

⚪ ⚪ ⚪ ⚪

🔵 ⚪ ⚪ ⚪

🔵 🔵 ⚪ ⚪

🔵 🔵 🔵 ⚪

🔵 🔵 🔵 🔵

02:00
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Enumerating possibilities
Hypothesis: 🔵 ⚪ ⚪ ⚪ Data: 🔵
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Enumerating possibilities
Hypothesis: 🔵 ⚪ ⚪ ⚪ Data: 🔵 ⚪
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Enumerating possibilities
Hypothesis: 🔵 ⚪ ⚪ ⚪ Data: 🔵 ⚪ 🔵
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Enumerating possibilities
Hypothesis: 🔵 ⚪ ⚪ ⚪ Data: 🔵 ⚪ 🔵
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Enumerating possibilities
Under this hypothesis,  paths (out of ) lead to the observed data. What about the other

hypotheses?

3 = 6443

31

Ladislas Nalborczyk - IBSM2023



Comparing hypotheses
Given the data, the most probable hypothesis is the one that maximises the number of possible ways

of obtaining the observed data.

Hypothesis Ways to obtain the data

⚪ ⚪ ⚪ ⚪ 0 x 4 x 0 = 0

🔵 ⚪ ⚪ ⚪ 1 x 3 x 1 = 3

🔵 🔵 ⚪ ⚪ 2 x 2 x 2 = 8

🔵 🔵 🔵 ⚪ 3 x 1 x 3 = 9

🔵 🔵 🔵 🔵 4 x 0 x 4 = 0
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Evidence accumulation
In the previous case, we considered that all the hypotheses were equally probable a priori (according to

the ). However, we could have a priori information from our knowledge (of the

characteristics of the bags of marbles, for example) or from previous data.

principle of indifference

Let’s assume we draw a new marble from the bag. How do we incorporate this new observation?

33

Ladislas Nalborczyk - IBSM2023

https://en.wikipedia.org/wiki/Principle_of_indifference


Evidence accumulation
All we have to do is apply the same strategy as before, and update the last count by multiplying it by the

new data. Yesterday’s posterior is today’s prior ( ).

Hypothesis Ways to produce 🔵 Previous count New count

⚪ ⚪ ⚪ ⚪ 0 0 0 x 0 = 0

🔵 ⚪ ⚪ ⚪ 1 3 3 x 1 = 3

🔵 🔵 ⚪ ⚪ 2 8 8 x 2 = 16

🔵 🔵 🔵 ⚪ 3 9 9 x 3 = 27

🔵 🔵 🔵 🔵 4 0 0 x 4 = 0

Lindley, 2000
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Incorporating prior knowledge
Now let’s suppose that an employee at the marble factory tells us that blue marbles are rare… This

employee tells us that for every bag containing 3 blue marbles, they make two bags containing only two,

and three bags containing only one. He also tells us that every bag contains at least one blue marble and

one white marble…

Hypothesis Previous count Factory prior New count

⚪ ⚪ ⚪ ⚪ 0 0 0 x 0 = 0

🔵 ⚪ ⚪ ⚪ 3 3 3 x 3 = 9

🔵 🔵 ⚪ ⚪ 16 2 16 x 2 = 32

🔵 🔵 🔵 ⚪ 27 1 27 x 1 = 27

🔵 🔵 🔵 🔵 0 0 0 x 0 = 0
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From enumerations to probabilities
The probability of a hypothesis after observing certain data is proportional to the number of ways in

which this hypothesis can produce the observed data, multiplied by its a priori probability.

Pr(hypothesis | data) ∝ Pr(data | hypothesis) × Pr(hypothesis)

To convert plausibilities to probabilities, all we have to do is standardise these plausibilities so that the

sum of the plausibilities of all possible hypotheses is equal to .1

Pr(hypothesis | data) =
Pr(data | hypothesis) × Pr(hypothesis)

sum of products
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From enumerations to probabilities
We define  as the proportion of blue marbles in the bag.

Hypothesis Ways to produce the data Probability

⚪ ⚪ ⚪ ⚪ 0 0 0

🔵 ⚪ ⚪ ⚪ 0.25 3 0.15

🔵 🔵 ⚪ ⚪ 0.5 8 0.40

🔵 🔵 🔵 ⚪ 0.75 9 0.45

🔵 🔵 🔵 🔵 1 0 0

p

p

ways <- c(0, 3, 8, 9, 0)1
ways / sum(ways)2

[1] 0.00 0.15 0.40 0.45 0.00
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Notations
 is a parameter or vector of parameters (e.g., the proportion of blue marbles).θ

the conditional probability of the data  given parameter .p(x | θ) x θ [p(x | θ = θ)]

once the value of  is known, it is seen as the likelihood function of the parameter . Note that

this is not a valid probability distribution .

p(x | θ) x θ

[p(x = x | θ)]

the prior probability of .p(θ) θ

the posterior probability of  (knowing ).p(θ | x) θ x

the marginal probability of  (on ) or “marginal likelihood”.p(x) x θ

p(θ | x) = = = ∝ p(x | θ)p(θ)
p(x | θ)p(θ)

p(x)

p(x | θ)p(θ)

p(x | θ)p(θ)∑
θ

p(x | θ)p(θ)

p(x | θ)p(θ)dx∫
θ
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Bayesian inference
In this framework, for each problem, we will follow 3 steps:

Build the model (the story of the data): likelihood + prior.

Update with data, compute (or approximate) the posterior.

Evaluate the model, quality of fit, sensitivity, summarise results, readjust.

Bayesian inference is really just counting and comparing of possibilities […] in order to make

good inference about what actually happened, it helps to consider everything that could

have happened ( ).

“
McElreath, 2016

The first idea is that Bayesian inference is reallocation of credibility across possibilities. The

second foundational idea is that the possibilities, over which we allocate credibility, are

parameter values in meaningful mathematical models ( ).

“
Kruschke, 2015
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Example, medical diagnosis ( )Gigerenzer et al., 2007
In women aged 40-50, with no family history and no symptoms, the probability of developing breast

cancer is around .0.008

Known properties of mammography:

If a woman has breast cancer, the probability of having a positive result is 0.90 (true positive).

If a woman does not have breast cancer, the probability of having a positive result is 0.07 (false

positive).

Suppose a woman has a mammogram and the test is positive. What should be inferred? What is the

probability that this woman has breast cancer?
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Maximum likelihood estimation
A general approach to parameter estimation.

The parameters govern the data, the data depend on the parameters.

Knowing certain parameter values, we can calculate the conditional probability of the observed

data.

The result of the mammogram (i.e., the data) depends on the presence/absence of breast cancer

(i.e., the parameter).

The maximum likelihood approach asks the question: “Which values of the parameter make the

observed data the most probable?

Specify the conditional probability of the data .p(x | θ)

When we consider it as a function of , we talk about likelihood: .θ (θ | x) = p(X = x | θ)

The maximum likelihood approach therefore consists of maximising this function, using the (known)

values of .x
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Conditional probability
If a woman has breast cancer, the probability of obtaining a positive result is .90.

Pr(Mam=+ | Cancer=+) = 0.90

Pr(Mam=- | Cancer=+) = 0.10

If a woman does not have breast cancer, the probability of obtaining a positive result is .07.

Pr(Mam=+ | Cancer=-) = 0.07

Pr(Mam=- | Cancer=-) = 0.93
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Medical diagnosis, maximum likelihood
A woman gets a mammogram, the result is positive…

Pr(Mam=+ | Cancer=+) = 0.90

Pr(Mam=+ | Cancer=-) = 0.07

Maximum likelihood: what is the value of  that maximises ?Cancer Mam=+

This approach leads to the conclusion that cancer is present (because it maximises the probability of a

positive mammogram)…
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Wait a minute…
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Medical diagnosis, working with natural frequencies
Consider 1000 women aged between 40 and 50, with no family history of cancer and no symptoms.

8 out of 1000 women have cancer

A mammogram is performed

Of the 8 women with cancer, 7 will have a positive result

Of the remaining 992 women, 69 will have a positive result

One woman has a mammogram, the result is positive

What should we infer?
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Medical diagnosis, working with natural frequencies

Pr(Cancer=+ | Mam=+) = = ≈ 0.09
7

7 + 69

7

76
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Medical diagnosis, Bayes’ theorem

represents the prior probability of : what we know about  before observing the data. In this case:

 and .

p(θ | x) =
p(x | θ)p(θ)

p(x)

p(θ) θ θ

Pr(Cancer=+) = 0.008 Pr(Cancer=-) = 0.992

prior <- c(0.008, 0.992)1
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Medical diagnosis, Bayes’ theorem

represents the conditional probability of the data  knowing the parameter , also known as the

likelihood function of the parameter .

p(θ | x) =
p(x | θ)p(θ)

p(x)

p(x | θ) x θ

θ

like <- rbind(c(0.9, 0.1), c(0.07, 0.93) ) %>% data.frame1
colnames(like) <- c("Mam+", "Mam-")2
rownames(like) <- c("Cancer+", "Cancer-")3
like4

        Mam+ Mam-
Cancer+ 0.90 0.10
Cancer- 0.07 0.93
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Medical diagnosis, Bayes’ theorem

 the marginal probability of  (over ). This is a constant used to normalise the distribution (the “sum

of products” from the previous example).

p(θ | x) =
p(x | θ)p(θ)

p(x)

p(x) x θ

p(x) = p(x | θ)p(θ)∑
θ

(marginal <- sum(like$"Mam+" * prior) )1

[1] 0.07664
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Medical diagnosis, Bayes’ theorem

the posterior probability of  given , that is, what we know about  after seeing .

p(θ | x) =
p(x | θ)p(θ)

p(x)

p(θ | x) θ x θ x

(posterior <- (like$"Mam+" * prior ) / marginal )1

[1] 0.09394572 0.90605428
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Bayesian inference as probabilistic knowledge updating
Before the mammogram, the probability of a woman drawn at random having breast cancer was

 (prior). After a positive result, this probability became

 (posterior). These probabilities are expressions of our knowledge. After a

positive mammogram, we still think it’s “very unlikely” to have cancer, but this probability has changed

considerably compared with “before the test”.

Pr(Cancer=+) = 0.008

Pr(Cancer=+ | Mam=+) = 0.09

A Bayesianly justifiable analysis is one that treats known values as observed values of random

variables, treats unknown values as unobserved random variables, and calculates the

conditional distribution of unknowns given knowns and model specifications using Bayes’

theorem ( ).

“
Rubin, 1984
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Beta-Binomial model

53

Ladislas Nalborczyk - IBSM2023



Bernoulli law
Applies to all situations where the data generation process can only result in two mutually exclusive

outcomes (e.g., a coin toss). At each trial, if we assume that , then .Pr(heads) = θ Pr(tails) = 1 − θ

Since Bernoulli, we know how to compute the probability of the result of a coin toss, as long as we know

the coin’s bias . Let’s assume that  when you get tails, and that  when you get heads. Then 

is distributed according to a Bernoulli distribution:

θ Y = 0 Y = 1 Y

p(y | θ) = Pr(Y = y | θ) = (1 − θθ
y )(1−y)

If we replace  by  or , we come back to our previous observations:y 0 1

Pr(Y = 1 | θ) = (1 − θ = θ × 1 = θθ
1 )(1−1)

Pr(Y = 0 | θ) = (1 − θ = 1 × (1 − θ) = 1 − θθ
0 )(1−0)
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Bernoulli process
If we have a series of independent and identically distributed throws  (i.e., each throw has a Bernoulli

probability distribution with probability ), the set of throws can be described by a Binomial distribution.

{ }Yi

θ

For example, suppose we have the following sequence of five throws: Tails, Tails, Tails, Heads, Heads. We

can recode this sequence into .

Reminder: The probability of each  is  and the probability of each  is .

{0, 0, 0, 1, 1}

1 θ 0 1 − θ

What is the probability of getting 2 heads out of 5 throws?
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Bernoulli process
Knowing that the trials are independent of each other, the probability of obtaining this sequence is

, that is: .(1 − θ) × (1 − θ) × (1 − θ) × θ × θ (1 − θθ
2 )3

We can generalise this result for a sequence of  throws and  “successes”:n y

(1 − θθ
y )n−y

So far, we have only considered a single sequence resulting in 2 successes for 5 throws, but there are

many sequences that can result in 2 successes for 5 throws (e.g., , )…{0, 0, 1, 0, 1} {0, 1, 1, 0, 0}
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Binomial coefficient
The binomial coefficient allows computing the number of possible combinations resulting in 

successes for  throws in the following way (read “  among ” or “number of combinations of  among

”)1:

y

n y n y

n

( ) = =
n

y
Cn

y

n!

y!(n − y)!

For instance for  and , we know there are 3 possible combinations: .

We can check this by applying the formula above.

y = 1 n = 3 {0, 0, 1}, {0, 1, 0}, {1, 0, 0}

( ) = = = = = 3
3

1
C3

1

3!

1!(3 − 1)!

3 × 2 × 1

1 × 2 × 1

6

2

# computing the total number of possible configurations in R1
choose(n = 3, k = 1)2

[1] 3

1. The factorial of a non-negative integer , denoted by , is the product of all positive integers less thann n!

57

Ladislas Nalborczyk - IBSM2023



Binomial distribution

The binomial distribution allows us to calculate the probability of obtaining  successes in  trials, for a

given . Example of the binomial distribution for an unbiased coin ( ), indicating the probability of

obtaining  heads in 10 throws (in R: dbinom(x = 0:10, size = 10, prob = 0.5)).

p(y | θ) = Pr(Y = y | θ) = ( ) (1 − θ
n

y
θ

y )n−y

y n

θ θ = 0.5

n
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Sampling binary data
library(tidyverse)1
set.seed(666) # for reproducibility2

3
sample(x = c(0, 1), size = 500, prob = c(0.4, 0.6), replace = TRUE) %>% # theta = 0.64
        data.frame() %>%5
        mutate(x = seq_along(.), y = cummean(.) ) %>%6
        ggplot(aes(x = x, y = y) ) +7
        geom_line(lwd = 1) +8
        geom_hline(yintercept = 0.6, lty = 3) +9
        labs(x = "Number of trials", y = "Proportion of heads") +10
        ylim(0, 1)11
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Defining the model (likelihood)
Likelihood function:

We consider  to be the number of successes.

We consider the number of observations  to be a constant.

We consider  to be the parameter of our model (i.e., the probability of success).

y

n

θ

The likelihood function is written as:

(θ | y, n) = p(y | θ, n) = ( ) (1 − θ ∝ (1 − θ
n

y
θ

y )n−y
θ

y )n−y
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Likelihood versus probability
A coin with a bias  is tossed again (where  represents the probability of getting heads). This coin is

tossed twice and we obtain a Heads and a Tails.

θ θ

We can compute the probability of getting one Heads in two coin tosses as a function of  as follows:θ

Pr(H, T | θ) + Pr(T , H | θ) = 2 × Pr(T | θ) × Pr(H | θ)

= θ(1 − θ) + θ(1 − θ)

= 2θ(1 − θ)

This probability is defined for a fixed data set and a varying . This function can be represented visually.θ
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Likelihood versus probability
# Graphical representation of the likelihood function for y = 1 and n = 21

2
y <- 1 # number of heads3
n <- 2 # number of trials4

5
data.frame(theta = seq(from = 0, to = 1, length.out = 1e3) ) %>%6
  mutate(likelihood = dbinom(x = y, size = n, prob = theta) ) %>%7
  ggplot(aes(x = theta, y = likelihood) ) +8
  geom_area(color = "orangered", fill = "orangered", alpha = 0.5) +9
  labs(x = expression(paste(theta, " - Pr(head)") ), y = "Likelihood")10
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Likelihood versus probability
If we calculate the area under the curve of this function, we get:

2θ(1 − θ)dθ =∫
1

0

1

3

f <- function(theta) {2 * theta * (1 - theta) }1
integrate(f = f, lower = 0, upper = 1)2

0.3333333 with absolute error < 3.7e-15

When we vary , the likelihood function is not a valid probability distribution (i.e., its integral is not equal

to 1). We use the term likelihood to distinguish this type of function from probability density functions.

We use the following notation to emphasise the fact that the likelihood function is a function of , and

that the data are fixed: .

θ

θ

(θ | data) = p(data | θ)
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Likelihood versus probability
Likelihood versus probability for two

coin tosses

Number of Heads (y)

theta 0 1 2 Total

0 1.00 0.00 0.00 1

0.2 0.64 0.32 0.04 1

0.4 0.36 0.48 0.16 1

0.6 0.16 0.48 0.36 1

0.8 0.04 0.32 0.64 1

1 0.00 0.00 1.00 1

Total 2.20 1.60 2.20

Note that the likelihood of  for a particular data item is equal to the probability of the data for this value

of . However, the distribution of these likelihoods (in columns) is not a probability distribution. In a usual

Bayesian analysis, the data are considered fixed and the value of  is considered a random variable.

θ

θ

θ
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Defining the model (prior)
How can we define a prior for ?θ

Semantic aspect the prior should be able to represent:

An absence of information

Knowledge of previous observations concerning this coin

A level of uncertainty concerning these previous observations

  →  

Mathematical aspect for a fully analytical solution:

The prior and posterior distributions must have the same form

The marginal likelihood must be calculable analytically

  →  
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Beta distribution

where  and  are two parameters such that , , and  is a normalisation constant.

p(θ | a, b) = Beta(θ | a, b)

= (1 − θ /B(a, b)θ
a−1 )b−1

∝ (1 − θθ
a−1 )b−1

a b a ≥ 0 b ≥ 0 B(a, b)
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Interpretation of parameters
The absence of prior knowledge can be expressed by setting  (orange distribution).

A prior in favour of an absence of bias can be expressed by setting  (green distribution).

A bias in favour of Heads can be expressed by setting  (blue distribution).

A bias in favour of Tails can be expressed by setting  (purple distribution).

a = b = 1

a = b > 1

a > b

a < b

67

Ladislas Nalborczyk - IBSM2023



Interpretation of parameters
The level of certainty increases with the sum .

No idea where the coin comes from:  -> flat prior.

While waiting for the experiment to begin, the coin was tossed 10 times and we observed 5 “Heads”:

 -> weakly informative prior.

The coin comes from the Bank of France:  -> strongly informative prior.

κ = a + b

a = b = 1

a = b = 5

a = b = 50
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Interpretation of parameters
Suppose we have an estimate of the most likely value of the parameter . We can re-parametrise the

Beta distribution as a function of the mode  and the level of certainty :

θ

ω κ

a

b

= ω(κ − 2) + 1

= (1 − ω)(κ − 2) + 1 for κ > 2

If  and , then .

If  and  then .

ω = 0.65 κ = 25 p(θ) = Beta(θ | 15.95, 9.05)

ω = 0.65 κ = 10 p(θ) = Beta(θ | 6.2, 3.8)
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Conjugate prior
Formally, if  is a class of sampling distributions , and  is a class of prior distributions for , then

the class  is conjugate to  if:

(p.35, ). In other words, a prior is called a conjugate prior if, when converted to a

posterior by being multiplied by the likelihood, it keeps the same form. In our case, the Beta prior is a

conjugate prior for the Binomial likelihood, because the posterior is a Beta distribution as well.

 p(y | θ)  θ

 

p(θ | y) ∈  for all p(⋅ | θ) ∈  and p(⋅) ∈ 

Gelman et al., 2013
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Analytical derivation of the posterior distribution
Assume a prior defined by:  p(θ | a, b) = Beta(a, b) = ∝ (1 − θ

(1−θθ
a−1 )b−1

B(a,b)
θ

a−1 )b−1

Given a likelihood function associated with  “Heads” for  throws:y n

p(y | n, θ) = Bin(y | n, θ) = ( ) (1 − θ ∝ (1 − θ
n

y
θy )n−y θy )n−y

Then (omitting the normalisation constants):

p(θ | y, n) ∝ p(y | n, θ) p(θ)

∝ Bin(y | n, θ) Beta(θ | a, b)

∝ (1 − θ   (1 − θθ
y )n−y

θ
a−1 )b−1

∝ θ
y+a−1(1 − θ)n−y+b−1

Bayes theorem

Application of previous formulas

Grouping powers of identical terms

Here, we have ignored the constants which do not depend on  (i.e., the number of combinations in the

binomial likelihood function and the Beta function  in the Beta prior).1 Taking them into account,

we obtain a Beta posterior distribution of the following form:

θ

B(a, b)

p(θ | y, n) = Beta(y + a, n − y + b)
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An example to help you digest
We observe  correct answers out of  questions. We choose a prior , that is, a

uniform prior on . This prior is equivalent to a prior knowledge of 0 successes and 0 failures (i.e., a

flat prior).

y = 7 n = 10 Beta(1, 1)

[0, 1]

The posterior distribution is given by:

p(θ | y, n) ∝ p(y | n, θ) p(θ)

∝ Bin(7 | 10, θ) Beta(θ | 1, 1)

= Beta(y + a, n − y + b)

= Beta(8, 4)

The mean of the posterior distribution is given by:

= +
y + a

n + a + b
  

posterior

y

n
⏟data

n

n + a + b
  

weight

a

a + b
⏟prior

a + b

n + a + b
  

weight
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An example to help you digest
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Influence of prior on posterior distribution
Case where .n < a + b, (n = 10, a = 4, b = 16)
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Influence of prior on posterior distribution
Case where .n = a + b, (n = 20, a = 4, b = 16)
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Influence of prior on posterior distribution
Case where .n > a + b, (n = 40, a = 4, b = 16)
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Take-home message

The posterior distribution is always a compromise between the prior distribution and the

likelihood function ( ).
“

Kruschke, 2015
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Take-home message
The more data we have, the less influence the prior has in estimating the posterior distribution (and vice

versa). Warning: When the prior assigns a probability of 0 to certain values of , the model is unable to

learn (these values are then considered “impossible”).

θ
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Marginal likelihood

Posterior = ∝ Likelihood × Prior
Likelihood × Prior

Marginal likelihood

p(θ | data) = ∝ p(data | θ) × p(θ)
p(data | θ) ×  p(θ)

p(data)

If we zoom in on the marginal likelihood (also known as evidence)…

p(data)

p(data)

= ∫ p(data, θ) dθ

= ∫ p(data | θ) × p(θ) dθ

Marginalising over θ

Applying the product rule
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Marginal likelihood
New issue:  is obtained by calculating the sum (for discrete discrete variables) or the integral (for

continuous variables) of the joint density  over all possible values of of . This can become tricky

when the model includes many continuous parameters…

p(data)

p(data, θ) θ

Let’s consider a model with two discrete parameters. The marginal likelihood is obtained as:

p(data) = p(data, , )∑
θ1

∑
θ2

θ1 θ2

Let’s now consider a model with two continuous parameters. The marginal likelihood is obtained as:

p(data) = p(data, , )d d∫
θ1

∫
θ2

θ1 θ2 θ1 θ2

80

Ladislas Nalborczyk - IBSM2023



Marginal likelihood
There are three ways to get around this problem:

Analytical solution  Using a conjugate prior (e.g., the Beta-Binomial model).

Discretised solution  Computing the posterior on a finite set of points (grid method).

Approximated solution  The parameter space is “cleverly” sampled (e.g., MCMC methods, cf. Course

n°03).

⟶

⟶

⟶
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Discrete distributions
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Continuous distributions

Problem: This solution is very restrictive. Ideally, the model (likelihood + prior) model should be defined

on the basis of the interpretation of the parameters of these distributions, and not to facilitate the

calculations…
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Posterior distribution, grid method
Define the grid

Calculate the prior probability for each grid value

Calculate the likelihood for each grid value

Calculate the product of prior x likelihood for each grid value, then normalise
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Posterior distribution, grid method
Define the grid

Calculate the prior probability for each grid value

Calculate the likelihood for each grid value

Calculate the product of prior x likelihood for each grid value, then normalise
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Posterior distribution, grid method
Define the grid

Calculate the prior probability for each grid value

Calculate the likelihood for each grid value

Calculate the product of prior x likelihood for each grid value, then normalise
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Posterior distribution, grid method
Define the grid

Calculate the prior probability for each grid value

Calculate the likelihood for each grid value

Calculate the product of prior x likelihood for each grid value, then normalise
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Posterior distribution, grid method
Define the grid

Calculate the prior probability for each grid value

Calculate the likelihood for each grid value

Calculate the product of prior x likelihood for each grid value, then normalise
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Posterior distribution, grid method
Problem with the number of parameters… Refining the grid increases the calculation time:

3 parameters with a  grid =  calculation points

10 parameters with a grid of  nodes =  calculation points

103 109

103 1030

The best supercomputer (Frontier) performs around  operations per second. If we consider

that it would have to perform 4 operations per node of the grid, it would take more time to go through

the grid than the estimated age of the universe (approximately  seconds)…

1.194 × 1018

(4.36 ± 0.012) × 1017
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Another solution: Sampling the posterior distribution
To sample (cleverly) a posterior distribution, we can use different implementations of MCMC methods

(e.g., Metropolis-Hastings, Hamiltonian Monte Carlo) which we will discuss in Course n°03. In the

meantime, we will work with samples from the posterior distribution i) to get used to results from MCMC

methods and ii) because it is simpler to compute summary statistics (e.g., mean or credible intervals) on

samples rather than by computing integrals.

p_grid <- seq(from = 0, to = 1, length.out = 1000) # creates a grid1
prior <- rep(1, 1000) # uniform prior2
likelihood <- dbinom(x = 12, size = 20, prob = p_grid) # computes likelihood3
posterior <- (likelihood * prior) / sum(likelihood * prior) # computes posterior4
samples <- sample(x = p_grid, size = 1e3, prob = posterior, replace = TRUE) # sampling5
hist(samples, main = "", xlab = expression(theta) ) # histogram6
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Posterior distribution, summary
Analytical solution for the Beta-Binomial model:

a <- b <- 1 # parameters of the Beta prior1
n <- 9 # number of observations2
y <- 6 # number of successes3
p_grid <- seq(from = 0, to = 1, length.out = 1000)4
posterior <- dbeta(p_grid, y + a, n - y + b) # plot(posterior)5

Grid method:

p_grid <- seq(from = 0, to = 1, length.out = 1000)1
prior <- rep(1, 1000) # uniform prior2
likelihood <- dbinom(x = y, size = n, prob = p_grid)3
posterior <- (likelihood * prior) / sum(likelihood * prior) # plot(posterior)4

Sampling the posterior distribution to describe it:

samples <- sample(x = p_grid, size = 1e4, prob = posterior, replace = TRUE) # hist(samples)1
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Posterior distribution, summary
Analytical solution

The posterior distribution is described explicitly

The model is strongly constrained (i.e., we have to pick conjugate priors)

Grid method

The posterior distribution is only computed for a finite set of values

The finer the grid, the better the estimate of the posterior distribution

There is an “accuracy - calculation time” trade-off
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Using samples to summarise the posterior distribution
Estimation of the central tendency: From a set of samples of samples from a posterior distribution, we

can calculate the mean mean, mode, and median. For example, for a uniform prior, 10 coin tosses and 3

heads.

mode_posterior <- find_mode(samples) # in blue1
mean_posterior <- mean(samples) # in orange2
median_posterior <- median(samples) # in green3
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Using samples to summarise the posterior distribution
What is the probability that the bias of the coin  is greater than 0.5?θ

sum(samples > 0.5) / length(samples) # equivalent to mean(samples > 0.5)1

[1] 0.112

What is the probability that the bias of the coin  is between 0.2 and 0.4?θ

sum(samples > 0.2 & samples < 0.4) / length(samples)1

[1] 0.5482
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Highest density interval (HDI)
Properties of the highest density interval:

The HDI indicates the most likely values for the parameter (given the data and the priors)

The narrower the HDI, the greater the degree of certainty

The width of the HDI decreases as the number of measurements increases

Definition: the values of the parameter  contained in an HDI at 89% are such that 

where  satisfies the following condition:
“ θ p(θ) > W

W

p(θ) dθ = 0.89.∫
θ : p(θ)>W
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Highest density interval (HDI)
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Highest density interval (HDI)
library(imsb)1

2
set.seed(666)3
p_grid <- seq(from = 0, to = 1, length.out = 1e3)4
pTheta <- dbeta(p_grid, 3, 10)5
massVec <- pTheta / sum(pTheta)6
samples <- sample(x = p_grid, size = 1e4, replace = TRUE, prob = pTheta)7

8
posterior_plot(samples = samples, credmass = 0.89)9
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Region of practical equivalence (ROPE)
This procedure can be used to accept or reject a null value. The region of practical equivalence or region

of practical equivalence (ROPE) defines an interval of values that are considered to be “equivalent” to

the null value. The figure below summarises the possible decisions resulting from this procedure

( ).Kruschke, 2018
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Region of practical equivalence (ROPE)
The value of the parameter (e.g., ) is rejected if the HDI is entirely outside the ROPE. The

parameter value (e.g., ) is accepted if the HDI is entirely within the ROPE. If the HDI and the ROPE

overlap, we cannot conclude…

θ = 0.5

θ = 0.5

posterior_plot(samples = samples, rope = c(0.49, 0.51) ) +1
    labs(x = expression(theta) )2
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Model comparison
We tossed coin 200 times and got 115 “Heads”. Is the coin biased? We build two models and try to find

out which one best accounts for the data.

{
: Y ∼ Binomial(n, θ = 0.5)0

: Y ∼ Binomial(n, θ ≠ 0.5)1

The coin is not biased

The coin is biased

The Bayes factor is the ratio of the marginal likelihoods (of the two models).

= ×
p( | data)0

p( | data)1

p(data | )0

p(data | )1

p( )0

p( )1
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Model comparaison
The Bayes factor is the ratio of the marginal likelihoods (of the two models).

= ×
p( | data)0

p( | data)1

p(data | )0

p(data | )1

p( )0

p( )1

In our example:

This BF indicates that the (prior) odds ratio increased (or should be updated) by 20% in favour of  after

observing the data. The Bayes factor can also be interpreted as follows: The data are approximately 1.2

times more likely under the  model than under the  model.

= = ≈ 1.1971.BF01

p(data | )0

p(data | )1

0.005955

0.004975

0

0 1
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Model checking
Two roles of the likelihood function:

It is a function of  for calculating the posterior distribution: .

When  is known/fixed, it is a probability distribution: .

θ (θ | y, n)

θ p(y | θ, n) ∝ (1 − θθ
y )(n−y)

This probability distribution can be used to generate data… !

For example: Generating 10.000 values from a binomial distribution based on 10 coin tosses and a

probability of Heads of 0.6:

samples <- rbinom(n = 1e4, size = 10, prob = 0.6)1
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Model checking
In a Bayesian models, there are two sources of uncertainty when generating predictions:

Uncertainty related to the sampling process

-> We draw data from a Binomial pdf

Uncertainty about the value of 

-> Our knowledge of  is described by a (posterior) pdf

θ

θ

For example: Generating 10.000 values from a binomial distribution based on 10 coin tosses and a

probability of Heads described by the posterior distribution of :θ

posterior <- rbeta(n = 1e4, shape1 = 16, shape2 = 10)1
samples <- rbinom(n = 1e4, size = 10, prob = posterior)2
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Prior and posterior predictive checking
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Posterior predictive checking
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Practical work

An analyst who works in a factory that makes famous Swedish bread rolls read a book that raised a

thorny question… Why does the toast always land on the butter side? Failing to come up with a plausible

answer, she set out to verify this assertion. The first experiment was to drop a slice of buttered bread from

the height of a table. The results of this experiment are available in the tartine1 dataset from the imsb
package.
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Retrieving the data
First task: Retrieving the data.

# importing the data1
data <- open_data(tartine1)2

3
# summary of the data4
str(data)5

'data.frame':   500 obs. of  2 variables:
 $ trial: int  1 2 3 4 5 6 7 8 9 10 ...
 $ side : int  1 1 0 1 0 0 1 1 1 0 ...
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Questions
Since the toast only has two sides, the result is similar to a draw according to a binomial distribution

with an unknown parameter . What is the posterior distribution of the parameter  given these data

and given that the analyst had no prior knowledge (you can also use your own prior)?

Calculate the 95% HDI of the posterior distribution and give a graphical representation of the result

(hint: use the function imsb::posterior_plot()).

Can the null hypothesis that  be rejected? Answer this question using the HDI+ROPE

procedure.

Import the tartine2 data from the imsb package. Update the model using the mode of the posterior

distribution calculated previously.

θ θ

θ = 0.5
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Proposed solution - Question 1
Since the toast only has two sides, the result is similar to a draw according to a binomial distribution with

an unknown parameter . What is the posterior distribution of the parameter  given these data?θ θ

# number of trials1
nbTrial <- length(data$trial)2

3
# number of "successes" (i.e., when the toast lands on the butter side)4
nbSuccess <- sum(data$side)5

6
# size of the grid7
grid_size <- 1e38

9
# generating the grid10
p_grid <- seq(from = 0, to = 1, length.out = grid_size)11

12
# uniform prior13
prior <- rep(1, grid_size)14

15
# computing the likelihod16
likelihood <- dbinom(x = nbSuccess, size = nbTrial, prob = p_grid)17

18
# computing the posterior19
posterior <- likelihood * prior / sum(likelihood * prior)20
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Proposed solution - Question 2
Calculate the 95% HDI of the posterior distribution and give a graphical representation of the result.

samples <- sample(x = p_grid, prob = posterior, size = 1e3, replace = TRUE)1
posterior_plot(samples = samples, credmass = 0.95) + labs(x = expression(theta) )2
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Proposed solution - Question 3
Can the null hypothesis that  be rejected? No, because the HDI overlaps with the ROPE…θ = 0.5

posterior_plot(1
  samples = samples, credmass = 0.95,2
  compval = 0.5, rope = c(0.49, 0.51)3
  ) + labs(x = expression(theta) )4
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Proposed solution - Question 4
At this point, no conclusion can be drawn. The analyst decides to repeat a series of observations to refine

her results.

data2 <- open_data(tartine2)1
str(data2)2

'data.frame':   100 obs. of  2 variables:
 $ trial: int  1 2 3 4 5 6 7 8 9 10 ...
 $ side : int  0 0 1 0 0 1 1 1 0 0 ...

nbTrial2 <- length(data2$trial) # number of trials1
nbSucces2 <- sum(data2$side) # number of "successes"2
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Proposed solution - Question 4
We use the previous posterior as the prior for this new model.

mode1 <- find_mode(samples)1
prior2 <- dbeta(p_grid, mode1 * (nbTrial - 2) + 1, (1 - mode1) * (nbTrial - 2) + 1)2

3
data.frame(x = p_grid, y = prior2) %>%4
  ggplot(aes(x = x, y = y) ) +5
  geom_area(alpha = 0.8, fill = "steelblue") +6
  geom_line(size = 0.8) +7
  labs(x = expression(theta), y = "Probability density")8
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Proposed solution - Question 4
likelihood2 <- dbinom(x = nbSucces2, size = nbTrial2, prob = p_grid)1
posterior2 <- likelihood2 * prior2 / sum(likelihood2 * prior2)2
samples2 <- sample(p_grid, prob = posterior2, size = 1e4, replace = TRUE)3

4
posterior_plot(5
  samples = samples2, credmass = 0.95,6
  compval = 0.5, rope = c(0.49, 0.51)7
  ) + labs(x = expression(theta) )8
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