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Planning
Course n°01: Introduction to Bayesian inference, Beta-Binomial model

Course n°02: Introduction to brms, linear regression

Course n°03: Markov Chain Monte Carlo, generalised linear model

Course n°04: Multilevel models, cognitive models
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Reminders: notation
The notation  can refer to two things depending on the context: the likelihood function and the

observation model. In addition, there are many ambiguous notations in statistics. Let’s try to clarify them

below.

p(y | θ)

 refers to a probability (e.g., dbinom(x = 2, size = 10, prob = 0.5)).Pr(Y = y | Θ = θ)

 refers to a probability density (e.g., dbeta(x = 0.4, shape1 = 2, shape2 = 3)).p(Y = y | Θ = θ)

 refers to a (discrete or continuous) likelihood function,  is given/known/�xed,  is a

random variable, the sum (or the integral) of this distribution is not equal to 1 (e.g., dbinom(x = 2, 
size = 10, prob = seq(0, 1, 0.1) )).

p(Y = y | Θ) y Θ

 refers to a probability mass (or density) function (of which the sum or the integral is equal

to 1) that we call the “observation model” ot “sampling distribution”,  is a random variable,  is

given/known/�xed (e.g., dbinom(x = 0:10, size = 10, prob = 0.5))

p(Y | Θ = θ)

Y θ

The goal of a Bayesian analysis (i.e., what is obtained at the end of such an analysis) is the posterior

distribution . It can be summarised to make the communication of results easier, but all the

desired information is contained in the entire distribution (not just its mean, mode, or whatever).

p(θ | y)
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Reminders: notation

Figure from .https://masterofmemory.com/mmem-0333-learn-the-greek-alphabet/
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Reminders: prior predictive checking
#####################################################################1
# We define a model with:                                           #2
# A Gaussian likelihood function: y ~ Normal(mu, sigma)             #3
# A Gaussian prior for the mean: mu ~ Normal(100, 10)               #4
# An Exponential prior for the dispersion: sigma ~ Exponential(0.1) #5
#####################################################################6

7
# drawing 10.000 observations from a Gaussian distribution without (epistemic) uncertainty8
rnorm(n = 1e4, mean = 100, sd = 10) |> hist(breaks = "FD")9

10
# drawing 10.000 observations from the Gaussian prior on mu (i.e., p(mu))11
# this prior represents what we know about mu before seeing the data...12
mu_prior <- rnorm(n = 1e4, mean = 100, sd = 10)13

14
# drawing 10.000 observations from a Gaussian distribution with prior-related (epistemic) uncertainty15
rnorm(n = 1e4, mean = mu_prior, sd = 10) |> hist(breaks = "FD")16

17
# drawing 10.000 observations from the Exponential prior on sigma (i.e., p(sigma))18
# this prior represents what we know about sigma before seeing the data...19
sigma_prior <- rexp(n = 1e4, rate = 0.1)20

21
# drawing 10.000 observations from a Gaussian distribution with prior-related22
# (epistemic) uncertainty on mu AND sigma23
# this is what the model expects about y given our priors about mu and sigma and the observation model24
rnorm(n = 1e4, mean = mu_prior, sd = sigma_prior) |> hist(breaks = "FD")25

5

Ladislas Nalborczyk - IBSM2023



Reminders: prior predictive checking
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The problem with posterior distributions…

Problem: The normalisation constant (in green) is obtained by calculating the sum (for discrete variables)

or the integral (for continuous variables) of the joint density  over all possible values of . This

becomes complicated when the model includes several parameters and/or the shape of the posterior

distribution is complex…

p(μ, σ | h) =
Normal( | μ, σ)Normal(μ | 178, 20)Uniform(σ | 0, 50)∏

i
hi

∫ ∫ Normal( | μ, σ)Normal(μ | 178, 20)Uniform(σ | 0, 50)dμdσ∏i hi

p(data, θ) θ
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The problem with posterior distributions…
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Reminders from Course n°01
There are three ways of getting around this problem:

The prior distribution is a conjugate prior of the likelihood function (e.g. Beta-Binomial model). In this

case, there is an analytical solution (i.e., one that can be calculated exactly) for the the posterior

distribution.

Alternatively, for simple models, we can use the grid method. The exact value of the posterior

probability is calculated at a �nite number of points in the parameter space.

For more complex models, exploring the entire parameter space space is usually not tractable. Instead,

we will sample a large number of points in the parameter space and use these samples as an

approximation of the posterior distribution, but we will sample the posterior space in a smart way.
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo
Markov chain Monte Carlo

 Random sampling

 The result is an ensemble of parameter values (samples)

⟶  

⟶  

Markov chain Monte Carlo

 Values are generated in a sequence

 With a temporal index to identify the position in the chain

 The result looks like: 

⟶  

⟶  

⟶   , , , … ,θ1 θ2 θ3 θ t

Markov chain Monte Carlo

 The current parameter value only depends on the previous parameter value:⟶  

Pr( | , , … , ) = Pr( | )θ t+1 θ t θ t−1 θ1 θ t+1 θ t
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Monte Carlo methods
Monte-Carlo refers to a family of algorithms designed to calculate (or approximate) a numerical value

using random processes (i.e., probabilistic techniques). The method was formalised in 1947 by Nicholas

Metropolis, and �rst published in 1949 in an article co-authored with Stanislaw Ulam.
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Monte Carlo methods: estimating 
Let  be a point with coordinates , where  and . We randomly draw the values of

 and  between  and  according to a uniform distribution. The point  belongs to the disc of centre

 and radius  if and only if . We know that the area of the quarter disc is

 and that the square which contains it has a surface . If the probability

distribution of which the point is drawn is uniform, then the probability that point  belongs to disc is

. By dividing the number of points in the disc by the number of draws , we obtain an

approximation of .

π

M (x, y) 0 < x < 1 0 < y < 1

x y 0 1 M

(0, 0) r = 1 ⩽ 1+x2 y2‾ ‾‾‾‾‾‾√
σ = π /4 = π/4r2 s = = 1r2

M

σ/s = π/4
Ninner

Ntotal

π/4
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Monte Carlo methods: estimating π
trials <- 1e5 # number of samples1
radius <- 1 # radius of the circle2
x <- runif(n = trials, min = 0, max = radius) # draws for x3
y <- runif(n = trials, min = 0, max = radius) # draws for y4
distance <- sqrt(x^2 + y^2) # distance to origin5
inside <- distance < radius # is it within the quarter of circle?6
pi_estimate <- 4 * sum(inside) / trials # estimated value of pi7
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Méthodes Monte Carlo
Monte-Carlo refers to a family of algorithms designed to calculate (or approximate) a numerical value

using random processes (i.e., probabilistic techniques). Can we use this sort of methods to approximate

the posterior distribution?

We know the priors  and .

We know the likelihood function .

p( )θ1 p( )θ2

p(data | , )θ1 θ2

But often, we do not know how to compute the exact posterior distribution

.p( , | data) =θ1 θ2

p(data | , )p( )p( )θ1 θ2 θ1 θ2

p(data)

Or rather, we don’t know how to compute …! But we can compute something that is proportional

to the posterior distribution. Since  is a constant, it does not change the shape of the posterior

distribution! So we’re going to explore the parameter space and produce samples in proportion to their

relative probability (density).

p(data)

p(data)

16

Ladislas Nalborczyk - IBSM2023



In�uence of the normalisation constant
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Monte Carle methods: Example
Let’s consider a simple example: We have a parameter  with 7 possible values and the following

distribution function, where .

θ

p(θ) = θ
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Monte Carle methods: Example
We can approximate this distribution by random draw: This amounts to drawing a large number of

points “at random” from among these 28 squares (as in the  example)!π
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Monte Carle methods: Example
niter <- 100 # number of samples1
theta <- 1:7 # possible values for theta2
ptheta <- theta # probability of theta3
samples <- sample(x = theta, prob = ptheta, size = niter, replace = TRUE) # samples4

The distribution of samples converges towards the “true” distribution.

But this generally requires a lot of samples…

No control over the speed of convergence…

Should we abandon independent sampling?
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Metropolis algorithm
This algorithm was �rst presented in Metropolis et al. ( ). The problem with Monte-Carlo algorithms is

not convergence, but the speed at which the method converges. To increase the speed of convergence,

we want to facilitate access to the most likely parameter values.

1953

Principle:

A proposal (a new position) is made on the basis of the current value of the parameter.

A random draw is made to accept or reject the new position.

Two central ideas:

The proposal should favour the most probable parameter values: These parameter values should be

proposed more often.

The proposal should be limited to values adjacent to the current parameter: The speed of convergence

is increased by staying where the information is (i.e., by traversing the parameter space locally rather

than globally).
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Metropolis algorithm in details
Select a starting point (any value of  can be selected).θ
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Metropolis algorithm in details
Propose a new position (i.e., a new value for ) centred on the current value of .θ θ
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Metropolis algorithm in details
Calculate the probability of moving to the new position according to the following rule:

= min( , 1)Pr
move

Pr( )θproposed

Pr( )θcurrent
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Metropolis algorithm in details
The accepted position becomes the new starting position and the algorithm is repeated.
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Metropolis algorithm in details
metropolis <- function (niter = 1e2, startval = 4) {1
    2
    x <- rep(0, niter) # initialising the chain (vector) of length niter3
    x[1] <- startval # defining the initial value of the parameter4
    5
    for (i in 2:niter) { # for each iteration6
        7
        current <- x[i - 1] # current value of the parameter8
        proposal <- current + sample(c(-1, 1), size = 1)9
        # we ensure the proposed value is within the [1, 7] interval10
        if (proposal < 1) proposal <- 111
        if (proposal > 7) proposal <- 712
        # computing the probability of moving to the proposed position13
        prob_move <- min(1, proposal / current)14
        # we move (or not) according to this probability15
        # x[i] <- ifelse(prob_move > runif(n = 1, min = 0, max = 1), proposal, current)16
        x[i] <- sample(c(proposal, current), size = 1, prob = c(prob_move, 1 - prob_move) )17
        18
    }19
    20
    # returning the entire chain21
    return (x)22
    23
}24
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Monte Carlo methods vs. Metropolis algorithm
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Metropolis algorithm
Application to coin tosses (continuous case)

 The likelihood function: 

 Prior: 

 The parameter we want to estimate lies in the  interval.

∙   p(y | θ, n) ∝ (1 − θθy )(n−y)

∙   p(θ | a, b) ∝ (1 − θθ(a−1) )(b−1)

∙   [0, 1]

Problem n°1: How should we de�ne the proposed move?

The proposal can be modelled by a normal distribution: 

 The mean  is : the proposed position is around the current value of the parameter

 The variance remains to be determined, it controls the distance from the new value.

Δθ ∼ Normal(0, σ)

⟶   μ 0

⟶  
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Metropolis algorithm
Problem n°2 : What probability should we use to accept or refuse the move? We use the product of the

likelihood and the prior: (1 − θ (1 − θθy )(n−y)θ(a−1) )(b−1)

The probability of accepting the move is given by: 

NOTE: The ratio  is the same whether you use the posterior distribution or the product of the

prior and the likelihood (because the normalisation constant cancels out)!

= min ( , 1)Prmove
Pr( +Δθ)θcurrent

Pr( )θcurrent

Pr( +Δθ)θcurrent

Pr( )θcurrent

29

Ladislas Nalborczyk - IBSM2023



Metropolis algorithm
 Select a starting point

 Choose 

 Only constraint: .

∙  

∙   θ ∈ [0, 1]

∙   Pr( ) ≠ 0θinitial

 Choose a direction of movement

 Make a draw according to 

⟶  

∙   Normal(0, σ)

 Accept or reject the proposed move, depending on the probability:

 The calculated position becomes the new position

⟶  

= min( , 1)Pr
move

Pr( + Δθ)θcurrent

Pr( )θcurrent

⟶  
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Metropolis algorithm
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Metropolis algorithm
How do you choose  for the proposal? There are two indicators that can be used to assess the quality of

the sampling:

 The ratio between the number of proposed moves and the number of accepted moves

 The effective sample size (i.e., the number of moves that are not correlated with the previous ones)

σ

→

→
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Metropolis algorithm
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Metropolis algorithm
In�uence of sigma

 All (or almost all) proposals are accepted.

 Few effective values…

It takes many iterations to get a satisfactory result…

→  

→  
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Metropolis algorithm
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Metropolis algorithm
In�uence of sigma

 Proposals are rarely accepted…

 Few effective values…

Many iterations are needed to obtain a satisfactory result…

→

→
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Metropolis algorithm1

metropolis_beta_binomial <- function (niter = 1e2, startval = 0.5) {1
    2
    x <- rep(0, niter) # initialising the chain (vector) of length niter3
    x[1] <- startval # defining the starting/initial value4
    5
    for (i in 2:niter) {6
        7
        current <- x[i - 1] # current value of the parameter8
        current_plaus <- dbeta(current, 2, 3) * dbinom(1, 2, current)9
        # proposal <- runif(n = 1, min = current - w, max = current + w) # proposed value10
        proposal <- rnorm(n = 1, mean = current, sd = 0.1) # proposed value11
        # ensuring that the proposed value is within the [0, 1] interval12
        if (proposal < 0) proposal <- 013
        if (proposal > 1) proposal <- 114
        proposal_plaus <- dbeta(proposal, 2, 3) * dbinom(1, 2, proposal)15
        # computing the probability of moving16
        alpha <- min(1, proposal_plaus / current_plaus)17
        # moving (or not) according to this probability18
        x[i] <- sample(c(current, proposal), size = 1, prob = c(1 - alpha, alpha) )19
        20
    }21
    22
    return (x)23
    24
}25

�. The Metropolis-Hastings algorithm is an extension of the Metropolis algorithm allowing for non-
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Metropolis algorithm
z1 <- metropolis_beta_binomial(niter = 1e4, startval = 0.5)1
z2 <- metropolis_beta_binomial(niter = 1e4, startval = 0.5)2

3
data.frame(z1 = z1, z2 = z2) %>%4
  mutate(sample = 1:nrow(.) ) %>%5
  pivot_longer(cols = z1:z2) %>%6
  ggplot(aes(x = sample, y = value, colour = name) ) +7
  geom_line(show.legend = FALSE) +8
  labs(x = "Number of iterations", y = expression(theta) ) + ylim(c(0, 1) )9
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Metropolis algorithm
data.frame(z1 = z1, z2 = z2) %>%1
  pivot_longer(cols = z1:z2) %>%2
  rownames_to_column() %>%3
  mutate(rowname = as.numeric(rowname) ) %>%4
  ggplot(aes(x = value) ) +5
  geom_histogram(aes(y = ..density..), color = "white", alpha = 0.8) +6
  stat_function(fun = dbeta, args = list(3, 4), color = "magenta4", size = 1) +7
  facet_wrap(~name) +8
  labs(x = expression(theta), y = "Density")9
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Metropolis-Hastings algorithm
40

Ladislas Nalborczyk - IBSM2023



Hamiltonian Monte Carlo
The Metropolis and Metropolis-Hastings (or Gibbs) algorithms perform poorly when the model

parameters are strongly correlated. The Hamiltonian Monte Carlo algorithm solves these problems by

taking into account the geometry of the posterior space. We adapt the proposal to the geometry of the

posterior distribution around the current position.

We use Hamiltonians which represent the total energy of a system. This energy is broken down into its

potential energy (which depends on its position in parameter space) and its kinetic energy, which

depends on its momentum :m

H(θ, m) = +U(θ)

⏟potential energy

KE(m)

⏟kinetic energy

The potential energy is given by the negative of the log of the posterior density (non-normalised):

As the posterior density increases, the potential energy decreases (i.e., it becomes more negative).

U(θ) = − log[p(data | θ) × p(θ)]
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Hamiltonian Monte Carlo
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Hamiltonian Monte Carlo
Select a starting point : Any value of  in posterior space can be selected.θ0 θ

The force with which the ball is thrown (momentum ) is randomly generated, for example from a

multivariate normal distribution: .

m

m ∼ MVNormal(μ, Σ)

A trajectory approximation algorithm (e.g., leapfrog) is used to estimate the trajectory and �nal position

of the ball in posterior space for a given trajectory duration.

After a certain time, the �nal position of the ball and its moment are recorded.

The proposed movement is accepted or rejected according to the following probability (where  (phi)

is the momentum associated with the marble):

ϕ

= min( , 1)Pr
move

p(data | ) p( )θproposed ϕproposed

p(data | ) p( )θcurrent ϕcurrent

We save the new position and start again…

43

Ladislas Nalborczyk - IBSM2023



In�uence of trajectory duration…
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In�uence of variability in the initial momentum…
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Hamiltonian Monte Carlo
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Assessing MCMCs
These methods may not converge to the “true” posterior distribution, due to limited computation time,

the parametrisation of certain hyper-parameters (e.g., variance of the normal distribution of the proposal,

or variance of the initial moment for HMC).

These methods produce chains of parameter values (samples). The use of a particular MCMC algorithm

to sample the posterior distribution is based on three objectives:

The chain values must be representative of the posterior distribution. These values must not depend

on the starting point. The values should not be restricted to a particular region of the parameter space.

The chain must be long enough to ensure the accuracy and stability of the result. The central tendency

and HDI calculated from the chain must not change if the procedure is restarted.

The chain should be generated ef�ciently (i.e., with as few iterations as possible).
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Assessing MCMCs - Representativeness
Visual veri�cation of trajectories: Chains must occupy the same space, convergence does not depend

on the starting point, no chain must have a particular trajectory (e.g., cyclic).

Visual check of densities: Densities must overlap.
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Assessing MCMCs - Representativeness
This display shows only the �rst 500 iterations. The trajectories do not overlap at the beginning (orange

zone). The density is also affected. In practice, these �rst iterations are suppressed (“burn-in” or “warm-

up” period).
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Assessing MCMCs - Representativeness
Numerical veri�cation of chains: The shrink factor (also known as  or Rhat) is the ratio between the

inter-chain and intra-chain variance. This value should ideally tend towards 1 (it is considered acceptable

up to 1.01).

R̂ 
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Assessing MCMCs - Stability and precision
The longer the chain, the more accurate and stable the result. If the chain “lingers” on each position, and

the number of iterations remains the same, then we lose precision. It will need more iterations to achieve

the same level of accuracy. Autocorrelation is the correlation of the chain with itself but shifted by 

iterations (lag).

k
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Assessing MCMCs - Stability and precision
The autocorrelation function is shown for each chain (top right). Another result re�ects the precision of

the sample: the effective sample size, . It represents the size of a non-autocorrelated

sample extracted from the sum of all the chains. For reasonable HDI accuracy, an ESS greater than 1000

is recommended.

ESS = N

1+2 ACF(k)∑
k
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Assessing MCMCs - Stability and precision
The standard error of a set of samples is given by : . As  increases, the standard error

decreases. We can generalise this idea to Markov chains: . For the central tendency to

be reasonably accurate, this value must be low.

SE = SD/ N‾‾√ N

MCSE = SD/ ESS‾ ‾‾‾√
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Assessing MCMCs - brms implementation
library(tidyverse)1
library(imsb)2
library(brms)3

4
d <- open_data(howell)5
d2 <- d %>% filter(age >= 18)6

7
priors <- c(8
  prior(normal(150, 20), class = Intercept),9
  prior(normal(0, 10), class = b),10
  prior(exponential(0.01), class = sigma)11
  )12

13
mod1 <- brm(14
  formula = height ~ 1 + weight,15
  prior = priors,16
  family = gaussian(),17
  data = d2, 18
  chains = 4, # number of chains19
  iter = 2000, # total number of iteration (per chain)20
  warmup = 1000, # number of warm-up iterations21
  thin = 1 # thinning (1 = no thinning)22
  )23
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Assessing MCMCs - brms implementation
# combo can be hist, dens, dens_overlay, trace, trace_highlight...1
# cf. https://mc-stan.org/bayesplot/reference/MCMC-overview.html2
plot(x = mod1, combo = c("dens_overlay", "trace") )3
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Assessing MCMCs - brms implementation
library(bayesplot)1
post <- posterior_samples(mod1, add_chain = TRUE)2
post %>% mcmc_acf(pars = vars(b_Intercept:sigma), lags = 10)3
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Assessing MCMCs - brms implementation
summary(mod1)1

 Family: gaussian 
  Links: mu = identity; sigma = identity 
Formula: height ~ 1 + weight 
   Data: d2 (Number of observations: 352) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept   113.90      1.95   110.18   117.70 1.00     3135     2949
weight        0.90      0.04     0.82     0.99 1.00     3140     2817

Family Specific Parameters: 
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma     5.11      0.20     4.74     5.51 1.00     3940     2887

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

57

Ladislas Nalborczyk - IBSM2023



Assessing MCMCs - brms implementation
Bulk-ESS refers to the ESS calculated on the distribution of samples normalised by their rank, and more

speci�cally around the central position of this distribution (e.g., mean or median). It is recommended that

the Bulk-ESS be at least 100 times greater than the number of chains (i.e., for 4 chains, the Bulk-ESS

should be at least 400).

Tail-ESS gives the minimum of the ESS calculated for the quantiles at 5% and 95% (i.e., for the tails of the

distribution of samples normalised by their rank). This value must be high if we attach importance to

estimating extreme values (for example to compute credible intervals).

When things go wrong, see these  from Stan’s team about priority choices, or this

 about frequent error messages. See also  or this  introducing these new

tools.

recommendations

guide recent article blog post
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https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
https://arxiv.org/abs/1903.08008
https://statmodeling.stat.columbia.edu/2019/03/19/maybe-its-time-to-let-the-old-ways-die-or-we-broke-r-hat-so-now-we-have-to-fix-it/


Assessing MCMCs - brms implementation
post %>% # rank plots1
  mcmc_rank_overlay(pars = vars(b_Intercept:sigma) ) +2
  labs(x = "Rang", y = "Frequency") +3
  coord_cartesian(ylim = c(25, NA) )4
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Summary
We have introduced and discussed the use of MCMCs to obtain samples from the (un-normalised)

posterior distribution. These samples can then be used to calculate various statistics for the posterior

distribution (e.g., mean, median, credible interval).

The Metropolis-Hastings algorithm can be used for any problem for which a likelihood can be calculated.

However, although this algorithm is simple to code, its convergence can be very slow… Furthermore, this

algorithm does not work well when there are strong correlations between the different parameters…

The HMC algorithm avoids these problems by taking into account the geometry of the posterior space as

it is explored (i.e., when the algorithm decides where to go next). This algorithm converges much faster

and fewer samples will be needed to approximate the posterior distribution.

The result of Bayesian inference is therefore, in practice, a set of samples obtained using MCMCs. The

reliability of these estimates must be assessed by verifying (visually and numerically) that the MCMCs

have indeed converged towards an optimal solution.
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Generalised linear model
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Introduction

The linear Gaussian model discussed in Course n°02 is characterised by a number of assumptions,

including the following:

 yi

 μi

∼ Normal( , σ)μi

= α + × + ×β1 x1i β2 x2i

The residuals are distributed according to a Normal distribution.

The variance of this Normal distribution is constant (homogeneity of variance).

The predictors act on the mean of this distribution.

The mean follows a linear or multi-linear model.
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Introduction
This model (the choice of a Normal distribution) implies several constraints, for example:

The observed data are de�ned on a continuous space.

This space is not bounded.

How can we model data that do not respect these constraints? For example, the proportion of correct

answers to a test (bounded between 0 and 1), a response time (restricted to positive values and often

distributed in an approximately lognormal manner), a number of avalanches…
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Introduction
We have already encountered a different model: the Beta-Binomial model (cf. Course n°01).

- The observed data is binary (e.g., 0 vs. 1) or the result of a sum of binary observations (e.g., a proportion).

- The prior probability of success (obtaining 1) is characterised by a Beta distribution. - The probability of

success does not depend on any predictor.

 yi

p 

∼ Binomial(n, p)

∼ Beta(a, b)
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Introduction
This model implies two constraints:

The observed data are de�ned in a discrete space.

This space is bounded.

How could predictors be added to this model?
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Generalised linear model

Objectives:

 yi

f ( ) pi

∼ Binomial(n, )pi

= α + β × xi

Accounting for discrete data (e.g., failure/success) generated by a single process.

Introducing predictors into the model.

Two changes from the Gaussian model:

The use of a Binomial probability distribution.

The linear model is no longer used to directly describe one of the parameters of the distribution, but a

function of this parameter (the Gaussian model can also be considered to have been formulated with

an identity link function).
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Link function
We use a link function to map the space of a linear (unbounded) model to the space of a potentially

bounded parameter such as a probability, de�ned on the interval .[0, 1]
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Link function
We use a link function to map the space of a linear (unbounded) model to the space of a potentially

bounded parameter such as a probability, de�ned on the interval .[0, 1]
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Logistic regression
The logit function of the binomial GLM (known as “log-odds”):

logit( ) = log( )pi

pi

1 − pi

The odds of an event are the ratio between the probability of the event occurring and the probability of it

not occurring. The logarithm of this odds is predicted by a linear model.

log( ) = α + β ×
pi

1 − pi

xi

To retrieve the probability of an event, we use the inverse link function, the logistic (or logit-inverse)

function:

=pi

exp(α + β × )xi

1 + exp(α + β × )xi
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Complications caused by the link function
Such link functions pose problems of interpretation: a change of one unit in a predictor no longer has a

constant effect on the probability but impacts it more or less according to its distance from the origin.

When , an increase of half a unit (i.e., ) results in an increase in probability of . Then,

each half-unit increase results in a smaller and smaller increase in …

x = 0 Δx = 0.5 0.25

p
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Complications caused by the link function
Second complication: this link function “forces” each predictor to interact with itself and with ALL the

other predictors, even if the interactions are not explicit…

In a Gaussian model, the rate of change of  as a function of  is given by  and does not

depend on  (i.e.,  is constant).

y x ∂(α + βx) / ∂x = β

x β

In a binomial GLM (with a logit link function), the probability of an event is given by the logistic function:

=pi

exp(α + β × )xi

1 + exp(α + β × )xi

And the rate of change of  as a function of the predictor  is given by:

We can see that the variation on  due to the predictor  is a function of the predictor , and also

depends on the value of … !

p x

=
∂p

∂x

β

2(1 + cosh(α + β × x))

p x x

α
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Logistic regression example: Prosociality in chimpanzees
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Logistic regression example
library(tidyverse)1
library(imsb)2

3
df1 <- open_data(chimpanzees) 4
str(df1)5

'data.frame':   504 obs. of  8 variables:
 $ actor       : int  1 1 1 1 1 1 1 1 1 1 ...
 $ recipient   : int  NA NA NA NA NA NA NA NA NA NA ...
 $ condition   : int  0 0 0 0 0 0 0 0 0 0 ...
 $ block       : int  1 1 1 1 1 1 2 2 2 2 ...
 $ trial       : int  2 4 6 8 10 12 14 16 18 20 ...
 $ prosoc_left : int  0 0 1 0 1 1 1 1 0 0 ...
 $ chose_prosoc: int  1 0 0 1 1 1 0 0 1 1 ...
 $ pulled_left : int  0 1 0 0 1 1 0 0 0 0 ...

pulled_left: 1 when the chimpanzee pulled the left lever, 0 otherwise.

prosoc_left: 1 when the left lever was associated with the prosocial option, 0 otherwise.

condition: 1 when a partner was present, 0 otherwise.
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Logistic regression example
The question
We want to know whether the presence of a partner chimpanzee encourages the chimpanzee to press

the prosocial lever, that is, the lever that gives food to both individuals. In other words, is there an

interaction between the effect of laterality and the effect of the presence of another chimpanzee on the

probability of pulling the left lever?

The variables

Observations (pulled_left): These are Bernoulli variables (0 or 1).

Predictor (prosoc_left): Are the two meals on the left or the right?

Predictor (condition): Is a partner present?
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Logistic regression example

Mathematical model without any predictor. How do you pick a value for …?

 Li

(equivalent to)  Li

logit( ) pi

α 

∼ Binomial(1, )pi

∼ Bernoulli( )pi

= α

∼ Normal(0, ω)

ω
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Prior predictive check
We write the previous model with brms and sample from the prior to check that the model’s predictions

(based on the prior and likelihood function alone) match our expectations.

library(brms)1
2

mod1.1 <- brm(3
  # "trials" allows defining the number of trials (i.e., n)4
  formula = pulled_left | trials(1) ~ 1,5
  family = binomial(),6
  prior = prior(normal(0, 10), class = Intercept),7
  data = df1,8
  # we samples from the prior9
  sample_prior = "yes"10
  )11
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Prior predictive check
# retrieving samples from the prior predictive distribution1
prior_draws(x = mod1.1) %>%2
  # applying the inverse link function3
  mutate(p = brms::inv_logit_scaled(Intercept) ) %>%4
  ggplot(aes(x = p) ) +5
  geom_density(fill = "steelblue", adjust = 0.1) +6
  labs(x = "Prior probability of pulling the left lever", y = "Probability density")7
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Prior predictive check
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Logistic regression
The intercept is interpreted in the log-odds space… to interpret it as a probability, we should apply the

inverse link function. We can use the brms::inv_logit_scaled() or the plogis() function.

On average (without considering the predictors), it seems that chimpanzees are slightly more likely to

pull the left lever than the right one…

fixed_effects <- fixef(mod1.2) # fixed effects (i.e., the intercept)1
plogis(fixed_effects) # inverse link function2

           Estimate Est.Error      Q2.5    Q97.5
Intercept 0.5776786 0.5228274 0.5327255 0.622261
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Logistic regression
post <- as_draws_df(x = mod1.2) # retrieving the posterior samples1
intercept_samples <- plogis(post$b_Intercept) # posterior samples for the intercept2

3
posterior_plot(samples = intercept_samples, compval = 0.5) + labs(x = "Probability of pulling left")4
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Logistic regression
How can we pick a value for  (in the priors on the slopes)?ω

 Li

logit( ) pi

α 

, ,  βP βC βPC

∼ Binomial(1, )pi

= α + + +βPPi βCCi βPCPiCi

∼ Normal(0, 1)

∼ Normal(0, ω)

 indicates whether the monkey pulled the left lever (pulled_left).Li

 indicates whether the left side corresponded to the prosocial side.Pi

 indicates the presence of a partner.Ci
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Logistic regression
# recoding predictors1
df1 <- df1 %>%2
  mutate(3
    prosoc_left = ifelse(prosoc_left == 1, 0.5, -0.5),4
    condition = ifelse(condition == 1, 0.5, -0.5)5
    )6

7
priors <- c(8
  prior(normal(0, 1), class = Intercept),9
  prior(normal(0, 10), class = b)10
  )11

12
mod2.1 <- brm(13
  formula = pulled_left | trials(1) ~ 1 + prosoc_left * condition,14
  family = binomial,15
  prior = priors,16
  data = df1,17
  sample_prior = "yes"18
  )19
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Prior predictive check
prior_draws(x = mod2.1) %>% # prior samples1
  mutate(2
    condition1 = plogis(Intercept - 0.5 * b), # p in condition 13
    condition2 = plogis(Intercept + 0.5 * b) # p in condition 04
    ) %>%5
  ggplot(aes(x = condition2 - condition1) ) + # plotting the difference6
  geom_density(fill = "steelblue", adjust = 0.1) +7
  labs(8
    x = "Difference in the probability of pulling the left lever between conditions",9
    y = "Probability density"10
    )11
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Logistic regression
priors <- c(1
  prior(normal(0, 1), class = Intercept),2
  prior(normal(0, 1), class = b)3
  )4

5
mod2.2 <- brm(6
  formula = pulled_left | trials(1) ~ 1 + prosoc_left * condition,7
  family = binomial,8
  prior = priors,9
  data = df1,10
  sample_prior = "yes"11
  )12
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Prior predictive check
prior_draws(mod2.2) %>% # prior samples1
  mutate(2
    condition1 = plogis(Intercept - 0.5 * b), # p in condition 13
    condition2 = plogis(Intercept + 0.5 * b) # p in condition 04
    ) %>%5
  ggplot(aes(x = condition2 - condition1) ) +6
  geom_density(fill = "steelblue", adjust = 0.1) +7
  labs(8
    x = "Difference in the probability of pulling the left lever between conditions",9
    y = "Probability density"10
    )11
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Logistic regression
summary(mod2.2)1

 Family: binomial 
  Links: mu = logit 
Formula: pulled_left | trials(1) ~ 1 + prosoc_left * condition 
   Data: df1 (Number of observations: 504) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
Intercept                 0.33      0.09     0.15     0.50 1.00     4652
prosoc_left               0.55      0.18     0.20     0.91 1.00     4661
condition                -0.19      0.18    -0.56     0.16 1.00     5310
prosoc_left:condition     0.17      0.35    -0.52     0.84 1.00     4909
                      Tail_ESS
Intercept                 3142
prosoc_left               2898
condition                 2737
prosoc_left:condition     3222

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
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Relative e�ects vs. absolute e�ects
The linear model does not directly predict the probability but the log-odds of the probability:

logit( )pi = log( ) = α + β ×
pi

1 − pi

xi

Two types of effect can be distinguished and interpreted.

Relative effect: The relative effect relates to the logarithm of the probability ratio. It indicates the

proportion of change induced by the predictor on the chances of success (or rather, on the odds). It tells

us nothing about the probability of the event, in absolute terms.

Absolute effect: Effect which directly affects the probability of an event. It depends on all the

parameters of the model and gives us the effective impact of a change of one unit of a predictor (in

probability space).
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Relative e�ect
This is a proportion of change induced by the predictor on the odds ratio. Illustration with a model

without interaction.

log( )
pi

1 − pi

pi

1 − pi

= α + βxi

= exp(α + β )xi

The proportional odds  of an event is the number by which the odds are multiplied when  increases by

one.

When  (for example), a one-unit increase in  doubles the odds.

q xi

q = = = exp(β)
exp(α + β( + 1))xi

exp(α + β )xi

exp(α) exp(β ) exp(β)xi

exp(α) exp(β )xi

q = 2 xi
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Interpreting relative e�ects
The relative effect of a parameter also depends on the other parameters. In the previous model, the

predictor prosoc_left increases the log odds by about 0.54, which translates into an increase in odds of

, that is, an increase in odds of about 72%.exp(0.54) ≈ 1.72

Let’s assume that the intercept .α = 4

The probability of pulling the lever without further consideration is .(4) ≈ 0.98logit−1

Considering the effect of prosoc_left, we obtain .(4 + 0.54) ≈ 0.99logit−1

An increase of 72% in the log-odds translates into an increase of just 1% in the effective probability…

Relative effects can lead to misinterpretations when the scale of the variable being measured is not

taken into account.
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Interpreting relative e�ects
fixef(mod2.2) # retrieving estimates for "fixed effects"1

                        Estimate  Est.Error       Q2.5     Q97.5
Intercept              0.3272953 0.09039531  0.1494670 0.5041133
prosoc_left            0.5457259 0.17928616  0.2024788 0.9110874
condition             -0.1915692 0.18382309 -0.5581443 0.1578334
prosoc_left:condition  0.1662294 0.34577459 -0.5209200 0.8445441

post <- as_draws_df(x = mod2.2) # posterior samples1
posterior_plot(samples = exp(post$b_prosoc_left), compval = 1) + labs(x = "Odds ratio")2
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Absolute e�ects
The absolute effect depends on all the parameters of the model and gives us the effective impact of a

change of one unit in a predictor (in probability space).

model_predictions <- fitted(mod2.2) %>% # prediction for p (i.e., the probability)1
  data.frame() %>% 2
  bind_cols(df1) %>%3
  mutate(condition = factor(condition), prosoc_left = factor(prosoc_left) )4
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Aggregated binomial regression
These data represent the number of applications to UC Berkeley by gender and department. Each

application was either accepted or rejected and the results are aggregated by department and gender.

We want to know whether there is a gender bias in recruitment?

(df2 <- open_data(admission) )1

   dept gender admit reject applications
1     A   Male   512    313          825
2     A Female    89     19          108
3     B   Male   353    207          560
4     B Female    17      8           25
5     C   Male   120    205          325
6     C Female   202    391          593
7     D   Male   138    279          417
8     D Female   131    244          375
9     E   Male    53    138          191
10    E Female    94    299          393
11    F   Male    22    351          373
12    F Female    24    317          341
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Aggregated binomial regression
We will build a model of the admissions decision using the gender of the applicant as a predictor.

 admiti

logit( ) pi

α 

 βm

∼ Binomial( , )ni pi

= α + ×βm mi

∼ Normal(0, 1)

∼ Normal(0, 1)

Variables:

: The number of successful applications (admit).admiti

: The total number of applications (applications).ni

: The aplicant’s gender (1 = Male).mi
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Aggregated binomial regression
priors <- c(prior(normal(0, 1), class = Intercept) )1

2
mod3 <- brm(3
  formula = admit | trials(applications) ~ 1,4
  family = binomial(link = "logit"),5
  prior = priors,6
  data = df2,7
  sample_prior = "yes"8
  )9
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Aggregated binomial regression
priors <- c(1
  prior(normal(0, 1), class = Intercept),2
  prior(normal(0, 1), class = b)3
  )4

5
# dummy-coding6
df2$male <- ifelse(df2$gender == "Male", 1, 0)7

8
mod4 <- brm(9
  formula = admit | trials(applications) ~ 1 + male,10
  family = binomial(link = "logit"),11
  prior = priors,12
  data = df2,13
  sample_prior = "yes"14
  )15
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Aggregated binomial regression

Being a man seems to be an advantage…! The odds ratio is .

summary(mod4)1

 Family: binomial 
  Links: mu = logit 
Formula: admit | trials(applications) ~ 1 + male 
   Data: df2 (Number of observations: 12) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept    -0.83      0.05    -0.93    -0.72 1.00     2225     1853
male          0.61      0.06     0.48     0.73 1.00     2628     2185

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

exp(0.61) ≈ 1.84
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Aggregated binomial regression
Let’s calculate the difference in probability of admission between men and women.

post <- as_draws_df(x = mod4)1
p.admit.male <- plogis(post$b_Intercept + post$b_male)2
p.admit.female <- plogis(post$b_Intercept)3
diff.admit <- p.admit.male - p.admit.female4
posterior_plot(samples = diff.admit, compval = 0)5
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Visualising the model’s predictions
Let’s examine the model’s predictions by department.
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Aggregated binomial regression
The model’s predictions are very poor… There are only two departments for which women have a lower

probability of admission than men (C and E), whereas the model predicts a lower probability of

admission for all departments…

The problem is twofold:

Men and women do not apply to the same departments.

The departments do not all have the same number of students.

This is … remarks:Simpson’s “paradox”

The posterior distribution alone would not have detected this problem.

We were able to pinpoint the problem by examining the detailed model’s predictions…
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Aggregated binomial regression
We therefore build a model of admission decisions by gender, within each department.

 admiti

logit( ) pi

 αdept[i]

 βm

∼ Binomial( , )ni pi

= + ×αdept[i] βm mi

∼ Normal(0, 1)

∼ Normal(0, 1)
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Aggregated binomial regression
# model without any predictor1
mod5 <- brm(2
  admit | trials(applications) ~ 0 + dept,3
  family = binomial(link = "logit"),4
  prior = prior(normal(0, 1), class = b),5
  data = df26
  )7

8
# model with one predictor (sex)9
mod6 <- brm(10
  admit | trials(applications) ~ 0 + dept + male,11
  family = binomial(link = "logit"),12
  prior = prior(normal(0, 1), class = b),13
  data = df214
  )15
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Aggregated binomial regression
summary(mod6)1

 Family: binomial 
  Links: mu = logit 
Formula: admit | trials(applications) ~ 0 + dept + male 
   Data: df2 (Number of observations: 12) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
deptA     0.68      0.10     0.50     0.87 1.00     1965     2929
deptB     0.64      0.11     0.42     0.87 1.00     2191     2846
deptC    -0.58      0.08    -0.73    -0.43 1.00     3009     2535
deptD    -0.61      0.09    -0.78    -0.44 1.00     2834     2758
deptE    -1.05      0.10    -1.24    -0.86 1.00     3101     2982
deptF    -2.57      0.16    -2.89    -2.26 1.00     3722     2448
male     -0.11      0.08    -0.27     0.06 1.00     1619     2403

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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Aggregated binomial regression

Now, the prediction for  goes the other way… The odds ratio is , the odds of admission

for men are estimated to be 90% of the odds for women.

fixef(mod6)1

        Estimate  Est.Error       Q2.5       Q97.5
deptA  0.6844546 0.09699335  0.4955171  0.87378332
deptB  0.6416951 0.11488191  0.4201809  0.86578455
deptC -0.5769302 0.07513928 -0.7272142 -0.42587992
deptD -0.6073597 0.08545915 -0.7823102 -0.44428476
deptE -1.0488372 0.09630802 -1.2376921 -0.86091445
deptF -2.5741081 0.16103756 -2.8928532 -2.26372318
male  -0.1053356 0.08111418 -0.2700577  0.05695022

βm exp(−0.1) = 0.9
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Aggregated binomial regression
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Conclusions
Men and women do not apply to the same departments and the departments vary in their probability of

admission. In this case, women applied more to departments E and F (with a lower probability of

admission) and applied less to departments A or B, with a higher probability of admission.

To assess the effect of gender on the probability of admission, we therefore need to ask the following

question: “What is the difference in probability of admission between men and women within each

department?” (rather than in general).

Remember that the regression model can be generalised to different data generation models (i.e.,

different probability distributions, such as Normal, Binomial, Poisson, etc) and that the parameter space

can be “connected” to the predictor space (measured variables) using link functions (e.g., logarithm,

exponential, logit, etc).

Remember the distinction between relative effects (e.g., a change in odds) and absolute effects (e.g., a

difference in probability).
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Practical work - Experimental absenteeism
Working with human subjects implies a minimum of mutual cooperation. But this is not always the case.

A non-negligible proportion of students who register for Psychology experiments do not turn up on the

day they are supposed to… We wanted to estimate the probability of a registered student’s attendance

as a function of whether or not a reminder email was sent (this example is presented in detail in two blog

articles, accessible  and ).here here

df3 <- open_data(absence)1
df3 %>% sample_frac %>% head(10)2

         day inscription reminder absence presence total
1     Monday      doodle       no       5        4     9
2    Tuesday       panel      yes       0        9     9
3     Monday      doodle      yes       2        6     8
4     Friday       panel      yes       0       10    10
5    Tuesday      doodle      yes       1        7     8
6  Wednesday      doodle      yes       0        4     4
7    Tuesday      doodle       no       4       10    14
8     Friday      doodle      yes       0        2     2
9   Thursday      doodle       no       3       11    14
10    Friday      doodle       no       7       11    18
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Practical work
What is the probability that a participant who has registered on his or her own initiative will

actually come and take part in the experiment?

What is the effect of the reminder?

What is the effect of the registration method?

What is the joint effect of these two predictors?
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Practical work
Write the model that predicts the presence of a participant without a predictor.

 yi

logit( ) pi

α 

∼ Binomial( , )ni pi

= α

∼ Normal(0, 1)
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Practical work
mod7 <- brm(1
    presence | trials(total) ~ 1,2
    family = binomial(link = "logit"),3
    prior = prior(normal(0, 1), class = Intercept),4
    data = df3,5
    # using all available parallel cores6
    cores = parallel::detectCores()7
    )8

fixef(mod7) # relative effect (log-odds)1

          Estimate Est.Error      Q2.5   Q97.5
Intercept 1.146064 0.1930107 0.7875779 1.53671

fixef(mod7) %>% plogis # absolute effect (probability of presence)1

           Estimate Est.Error     Q2.5     Q97.5
Intercept 0.7587913 0.5481034 0.687311 0.8229859
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Practical work
What is the probability that a participant who has registered on his or her own initiative will actually

come and take part in the experiment?

What is the effect of the reminder?

What is the effect of the registration method?

What is the joint effect of these two predictors?
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Practical work
We start by recoding into dummy variables reminder and inscription.

df3 <-1
  df3 %>%2
  mutate(3
    reminder = ifelse(reminder == "no", 0, 1),4
    inscription = ifelse(inscription == "panel", 0, 1)5
    )6

7
head(df3, n = 10)8

        day inscription reminder absence presence total
1    Friday           1        0       7       11    18
2    Friday           1        1       0        2     2
3    Friday           0        1       0       10    10
4    Monday           1        0       5        4     9
5    Monday           1        1       2        6     8
6    Monday           0        1       6       12    18
7  Thursday           1        0       3       11    14
8   Tuesday           1        0       4       10    14
9   Tuesday           1        1       1        7     8
10  Tuesday           0        1       0        9     9
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Practical work
Write the model that predicts presence as a function of recall.

 yi

logit( ) pi

α 

β 

∼ Binomial( , )ni pi

= α + β × reminderi

∼ Normal(0, 1)

∼ Normal(0, 1)
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Practical work
Write the model that predicts the probability of presence as a function of reminder.

priors <- c(1
  prior(normal(0, 1), class = Intercept),2
  prior(normal(0, 1), class = b)3
  )4

5
mod8 <- brm(6
    presence | trials(total) ~ 1 + reminder,7
    family = binomial(link = "logit"),8
    prior = priors,9
    data = df3,10
    cores = parallel::detectCores()11
    )12
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Practical work
What is the relative effect of the reminder email?

Sending a reminder e-mail increases the odds by about .

exp(fixef(mod8)[2]) # odds ratio with and without the reminder e-mail1

[1] 3.021774

3
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Practical work
What is the absolute effect of the reminder email?

post <- as_draws_df(x = mod8) # retrieving posterior samples1
p.no <- plogis(post$b_Intercept) # probability of presence without reminder e-mail2
p.yes <- plogis(post$b_Intercept + post$b_reminder) # probability of presence with reminder e-mail3
posterior_plot(samples = p.yes - p.no, compval = 0, usemode = TRUE)4
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Practical work
library(tidybayes)1
library(modelr)2

3
df3 %>%4
  group_by(total) %>%5
  data_grid(reminder = seq_range(reminder, n = 1e2) ) %>%6
  add_fitted_draws(mod8, newdata = ., n = 100, scale = "linear") %>%7
  mutate(estimate = plogis(.value) ) %>%8
  group_by(reminder, .draw) %>%9
  summarise(estimate = mean(estimate) ) %>%10
  ggplot(aes(x = reminder, y = estimate, group = .draw) ) +11
  geom_hline(yintercept = 0.5, lty = 2) +12
  geom_line(aes(y = estimate, group = .draw), size = 0.5, alpha = 0.1) +13
  ylim(0, 1) +14
  labs(x = "Reminder e-mail", y = "Probability of presence")15
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Practical work
What is the probability that a participant who has registered on his or her own initiative will actually

come and take part in the experiment?

What is the effect of the reminder?

What is the effect of the registration method?

What is the joint effect of these two predictors?
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Practical work
Write the model that predicts the probability of presence as a function of registration mode.

 yi

logit( ) pi

α 

β 

∼ Binomial( , )ni pi

= α + β × inscriptioni

∼ Normal(0, 1)

∼ Normal(0, 1)
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Practical work
priors <- c(1
  prior(normal(0, 1), class = Intercept),2
  prior(normal(0, 1), class = b)3
  )4

5
mod9 <- brm(6
    presence | trials(total) ~ 1 + inscription,7
    family = binomial(link = "logit"),8
    prior = priors,9
    data = df3,10
    cores = parallel::detectCores()11
    )12
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Practical work

The probability of presence is increased by around  when registering on a panel compared with

registering on a Doodle (slightly smaller effect than for the reminder).

post <- as_draws_df(x = mod9)1
p.panel <- plogis(post$b_Intercept) # average probability of presence - panel2
p.doodle <- plogis(post$b_Intercept + post$b_inscription) # average probability of presence- doodle3
posterior_plot(samples = p.panel - p.doodle, compval = 0, usemode = TRUE)4

0.17
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Practical work
What is the probability that a participant who has registered on his or her own initiative will actually

come and take part in the experiment?

What is the effect of the reminder?

What is the effect of the registration method?

What is the joint effect of these two predictors?
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Practical work
Write the full model.

 yi

logit( ) pi

α 

,  β1 β2

∼ Binomial( , )ni pi

= α + × + ×β1 reminderi β2 inscriptioni

∼ Normal(0, 1)

∼ Normal(0, 1)
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Practical work
priors <- c(1
  prior(normal(0, 1), class = Intercept),2
  prior(normal(0, 1), class = b)3
  )4

5
mod10 <- brm(6
    presence | trials(total) ~ 1 + reminder + inscription,7
    family = binomial(link = "logit"),8
    prior = priors,9
    data = df3,10
    cores = parallel::detectCores()11
    )12
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Practical work
summary(mod10)1

 Family: binomial 
  Links: mu = logit 
Formula: presence | trials(total) ~ 1 + reminder + inscription 
   Data: df3 (Number of observations: 13) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept       1.02      0.57    -0.11     2.11 1.00     2523     2363
reminder        0.92      0.48     0.02     1.92 1.00     2436     2415
inscription    -0.35      0.54    -1.39     0.75 1.00     2577     2306

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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Practical work
The reminder e-mail seems to have less effect in the full model than in the simple model… why is this?

fixef(mod8) %>% exp() # computing the odds ratio1

          Estimate Est.Error     Q2.5    Q97.5
Intercept 1.958003  1.274121 1.226752 3.179808
reminder  3.021774  1.468636 1.435682 6.527387

fixef(mod9) %>% exp() # computing the odds ratio1

             Estimate Est.Error      Q2.5      Q97.5
Intercept   6.3070616  1.479543 3.1012980 14.3532331
inscription 0.3807339  1.547852 0.1583898  0.8753162

fixef(mod10) %>% exp() # computing the odds ratio1

             Estimate Est.Error      Q2.5    Q97.5
Intercept   2.7724678  1.771534 0.8995797 8.209809
reminder    2.5058259  1.616034 1.0199602 6.851798
inscription 0.7016501  1.712775 0.2500480 2.115074
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Practical work
When two predictors share some of the same information, the slope estimates are correlated…

as_draws_df(x = mod10) %>%1
    ggplot(aes(b_reminder, b_inscription) ) +2
    geom_point(size = 3, pch = 21, alpha = 0.8, color = "white", fill = "black") +3
    labs(x = "Effect (slope) of reminder email", y = "Effect (slope) of registration method")4
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Practical work
Indeed, the data were collected by two experimenters. One of them recruited all her participants via

Doodle, and did not often send a reminder email. The second experimenter recruited all her participants

via a physical sign in the laboratory and systematically sent a reminder email. In other words, these two

variables are almost perfectly identical.

open_data(absence) %>%1
  group_by(inscription, reminder) %>%2
  summarise(n = sum(total) ) %>%3
  spread(key = reminder, value = n) %>%4
  data.frame()5

  inscription no yes
1      doodle 72  22
2       panel NA  51
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