Introduction to Bayesian statistical modelling

A course with R, Stan, and brms

Ladislas Nalborczyk (UNICOG, NeuroSpin, CEA, Gif/Yvette, France)

Planning

Course n°01: Introduction to Bayesian inference, Beta-Binomial model Course n°02: Introduction to brms, linear regression **Course n°03: Markov Chain Monte Carlo, generalised linear model** Course n°04: Multilevel models, cognitive models

Reminders: notation

The notation $p(y \mid \theta)$ can refer to two things depending on the context: the likelihood function and the observation model. In addition, there are many ambiguous notations in statistics. Let's try to clarify them below.

- $Pr(Y = y | \Theta = \theta)$ refers to a **probability** (e.g., dbinom(x = 2, size = 10, prob = 0.5)).
- $p(Y = y | \Theta = \theta)$ refers to a probability **density** (e.g., dbeta(x = 0.4, shape1 = 2, shape2 = 3)).
- p(Y = y | Θ) refers to a (discrete or continuous) likelihood function, y is given/known/fixed, Θ is a random variable, the sum (or the integral) of this distribution is not equal to 1 (e.g., dbinom(x = 2, size = 10, prob = seq(0, 1, 0.1))).
- $p(Y \mid \Theta = \theta)$ refers to a probability mass (or density) function (of which the sum or the integral **is equal** to 1) that we call the "observation model" ot "sampling distribution", Y is a random variable, θ is given/known/fixed (e.g., dbinom(x = 0:10, size = 10, prob = 0.5))

The goal of a Bayesian analysis (i.e., what is obtained at the end of such an analysis) is the posterior distribution $p(\theta \mid y)$. It can be summarised to make the communication of results easier, but all the desired information is contained in **the entire distribution** (not just its mean, mode, or whatever).

Greek Alphabet and Symbols

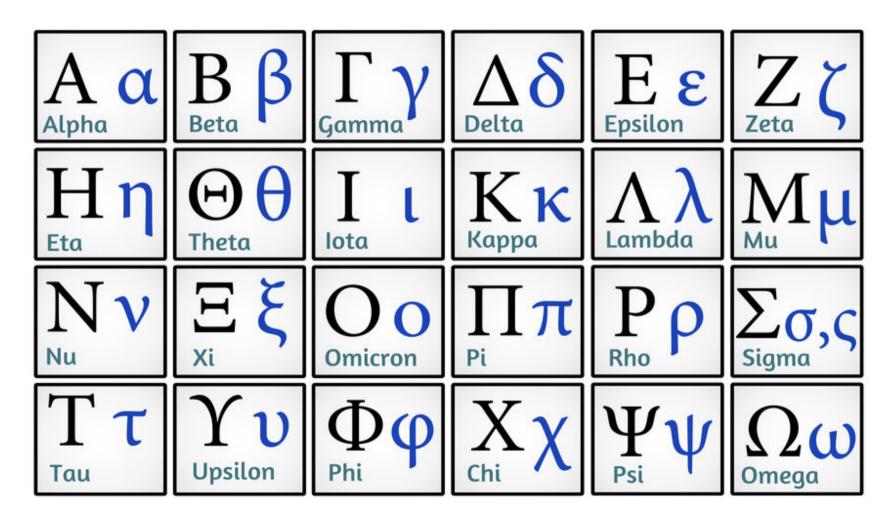


Figure from https://masterofmemory.com/mmem-0333-learn-the-greek-alphabet/.

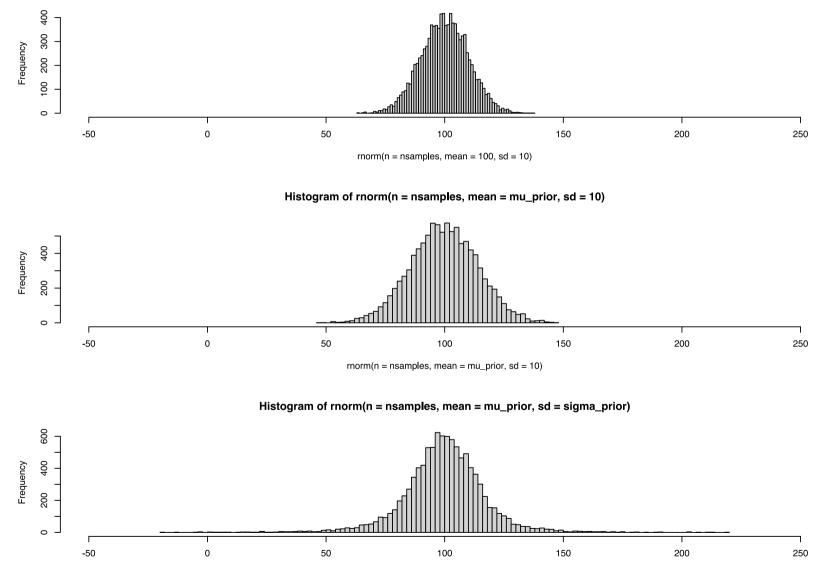
Ladislas Nalborczyk - IBSM2023

Reminders: prior predictive checking

```
٢٦
2 # We define a model with:
3 # A Gaussian likelihood function: y ~ Normal(mu, sigma)
4 # A Gaussian prior for the mean: mu ~ Normal(100, 10)
5 # An Exponential prior for the dispersion: sigma ~ Exponential(0.1) #
  6
8 # drawing 10.000 observations from a Gaussian distribution without (epistemic) uncertainty
9 rnorm(n = 1e4, mean = 100, sd = 10) |> hist(breaks = "FD")
10
11 # drawing 10.000 observations from the Gaussian prior on mu (i.e., p(mu))
12 # this prior represents what we know about mu before seeing the data...
13 mu prior <- rnorm(n = 1e4, mean = 100, sd = 10)
14
15 # drawing 10.000 observations from a Gaussian distribution with prior-related (epistemic) uncertainty
16 rnorm(n = 1e4, mean = mu prior, sd = 10) |> hist(breaks = "FD")
17
18 # drawing 10.000 observations from the Exponential prior on sigma (i.e., p(sigma))
19 # this prior represents what we know about sigma before seeing the data...
20 sigma prior \leq -rexp(n = 1e4, rate = 0.1)
21
22 # drawing 10.000 observations from a Gaussian distribution with prior-related
23 # (epistemic) uncertainty on mu AND sigma
24 # this is what the model expects about y given our priors about mu and sigma and the observation model
25 rnorm(n = 1e4, mean = mu prior, sd = sigma prior) |> hist(breaks = "FD")
```

Reminders: prior predictive checking

Histogram of rnorm(n = nsamples, mean = 100, sd = 10)



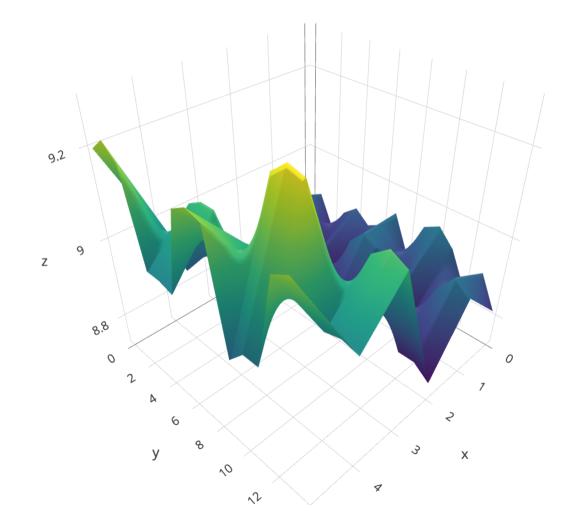
rnorm(n = nsamples, mean = mu_prior, sd = sigma_prior)

The problem with posterior distributions...

 $p(\mu, \sigma \mid h) = \frac{\prod_{i} \operatorname{Normal}(h_i \mid \mu, \sigma) \operatorname{Normal}(\mu \mid 178, 20) \operatorname{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \operatorname{Normal}(h_i \mid \mu, \sigma) \operatorname{Normal}(\mu \mid 178, 20) \operatorname{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$

Problem: The normalisation constant (in green) is obtained by calculating the sum (for discrete variables) or the integral (for continuous variables) of the joint density $p(\text{data}, \theta)$ over all possible values of θ . This becomes complicated when the model includes several parameters and/or the shape of the posterior distribution is complex...

The problem with posterior distributions...



Reminders from Course n°01

There are three ways of getting around this problem:

- The prior distribution is a **conjugate prior** of the likelihood function (e.g. Beta-Binomial model). In this case, there is an analytical solution (i.e., one that can be calculated exactly) for the the posterior distribution.
- Alternatively, for simple models, we can use the **grid method**. The exact value of the posterior probability is calculated at a finite number of points in the parameter space.
- For more complex models, exploring the entire parameter space space is usually not tractable. Instead, we will sample a large number of points in the parameter space and use these samples as an approximation of the posterior distribution, but we will sample the posterior space in a smart way.

Markov Chain Monte Carlo

Markov Chain Monte Carlo

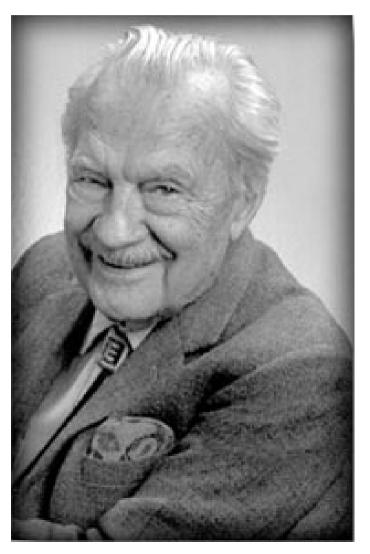
- Markov chain Monte Carlo
 - \longrightarrow Random sampling
 - \longrightarrow The result is an ensemble of parameter values (samples)
- Markov chain Monte Carlo
 - \longrightarrow Values are generated in a sequence
 - \longrightarrow With a temporal index to identify the position in the chain
 - \longrightarrow The result looks like: $\theta^1, \theta^2, \theta^3, \dots, \theta^t$
- Markov chain Monte Carlo

 \rightarrow The current parameter value only depends on the previous parameter value: $\Pr(\theta^{t+1} \mid \theta^t, \theta^{t-1}, \dots, \theta^1) = \Pr(\theta^{t+1} \mid \theta^t)$

Ladislas Nalborczyk - IBSM2023

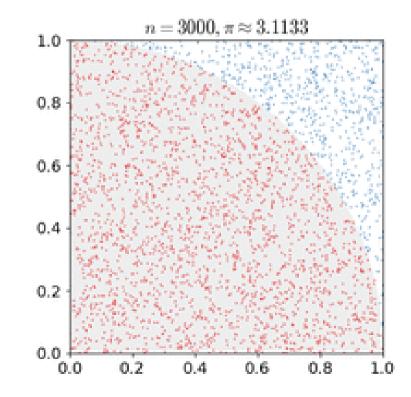
Monte Carlo methods

Monte-Carlo refers to a family of algorithms designed to calculate (or approximate) a numerical value using random processes (i.e., probabilistic techniques). The method was formalised in 1947 by Nicholas Metropolis, and first published in 1949 in an article co-authored with Stanislaw Ulam.



Monte Carlo methods: estimating π

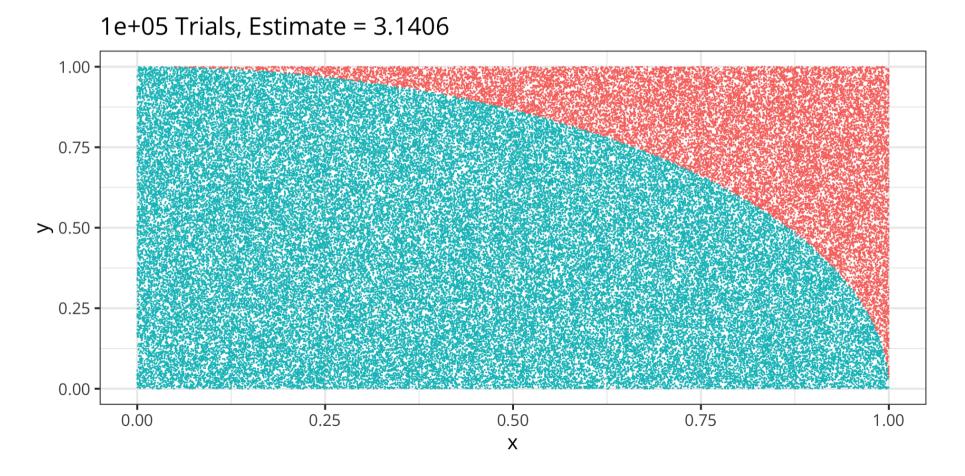
Let M be a point with coordinates (x, y), where 0 < x < 1 and 0 < y < 1. We randomly draw the values of x and y between 0 and 1 according to a uniform distribution. The point M belongs to the disc of centre (0, 0) and radius r = 1 if and only if $\sqrt{x^2 + y^2} \leq 1$. We know that the area of the quarter disc is $\sigma = \pi r^2/4 = \pi/4$ and that the square which contains it has a surface $s = r^2 = 1$. If the probability distribution of which the point is drawn is uniform, then the probability that point M belongs to disc is $\sigma/s = \pi/4$. By dividing the number of points in the disc by the number of draws $\frac{N_{\text{inner}}}{N_{\text{total}}}$, we obtain an approximation of $\pi/4$.



Ladislas Nalborczyk - IBSM2023

Monte Carlo methods: estimating π

```
1 trials <- 1e5 # number of samples
2 radius <- 1 # radius of the circle
3 x <- runif(n = trials, min = 0, max = radius) # draws for x
4 y <- runif(n = trials, min = 0, max = radius) # draws for y
5 distance <- sqrt(x<sup>2</sup> + y<sup>2</sup>) # distance to origin
6 inside <- distance < radius # is it within the quarter of circle?
7 pi_estimate <- 4 * sum(inside) / trials # estimated value of pi</pre>
```



Ladislas Nalborczyk - IBSM2023

٢٦

Méthodes Monte Carlo

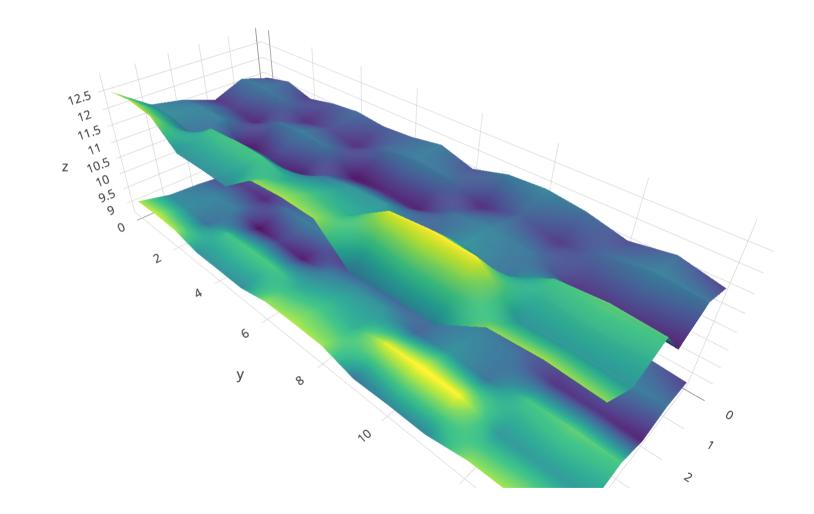
Monte-Carlo refers to a family of algorithms designed to calculate (or approximate) a numerical value using random processes (i.e., probabilistic techniques). Can we use this sort of methods to approximate the posterior distribution?

We know the priors $p(\theta_1)$ and $p(\theta_2)$. We know the likelihood function $p(\text{data} \mid \theta_1, \theta_2)$.

But often, we do not know how to compute the exact posterior distribution $p(\theta_1, \theta_2 \mid \text{data}) = \frac{p(\text{data} \mid \theta_1, \theta_2)p(\theta_1)p(\theta_2)}{p(\text{data})}.$

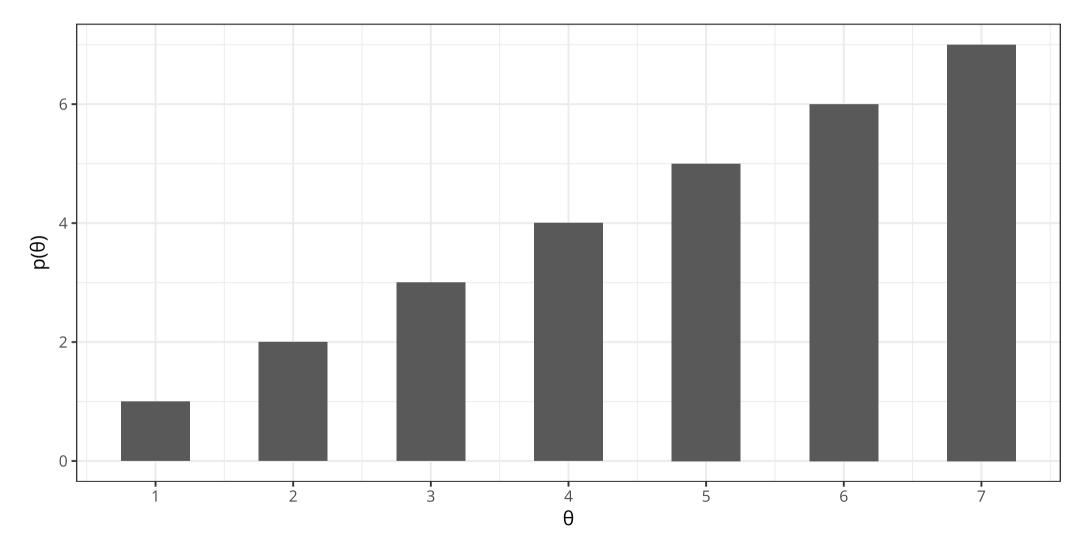
Or rather, we don't know how to compute p(data)...! But we can compute something that is proportional to the posterior distribution. Since p(data) is a constant, it does not change the shape of the posterior distribution! So we're going to explore the parameter space and produce samples in proportion to their relative probability (density).

Influence of the normalisation constant



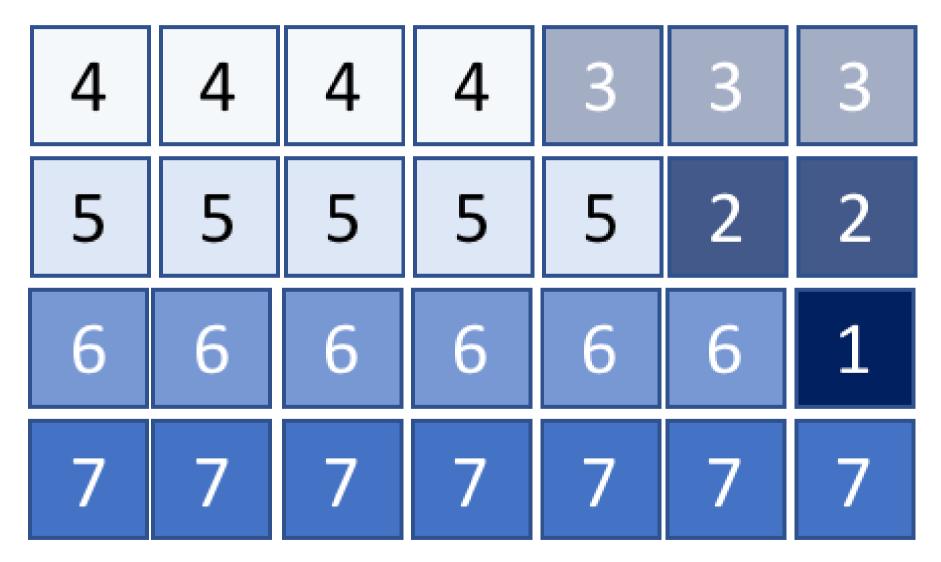
Monte Carle methods: Example

Let's consider a simple example: We have a parameter θ with 7 possible values and the following distribution function, where $p(\theta) = \theta$.



Monte Carle methods: Example

We can approximate this distribution by random draw: This amounts to drawing a large number of points "at random" from among these 28 squares (as in the π example)!



Monte Carle methods: Example

- 1 niter <- 100 # number of samples
- 2 theta <- 1:7 # possible values for theta
- 3 ptheta <- theta # probability of theta
- 4 samples <- sample(x = theta, prob = ptheta, size = niter, replace = **TRUE**) # samples

Posterior distribution based on 100 draws



- The distribution of samples converges towards the "true" distribution.
- But this generally requires a lot of samples...
- No control over the speed of convergence...
- Should we abandon independent sampling?

This algorithm was first presented in Metropolis et al. (<u>1953</u>). The problem with Monte-Carlo algorithms is not convergence, but the speed at which the method converges. To increase the speed of convergence, we want to **facilitate access to the most likely parameter values**.

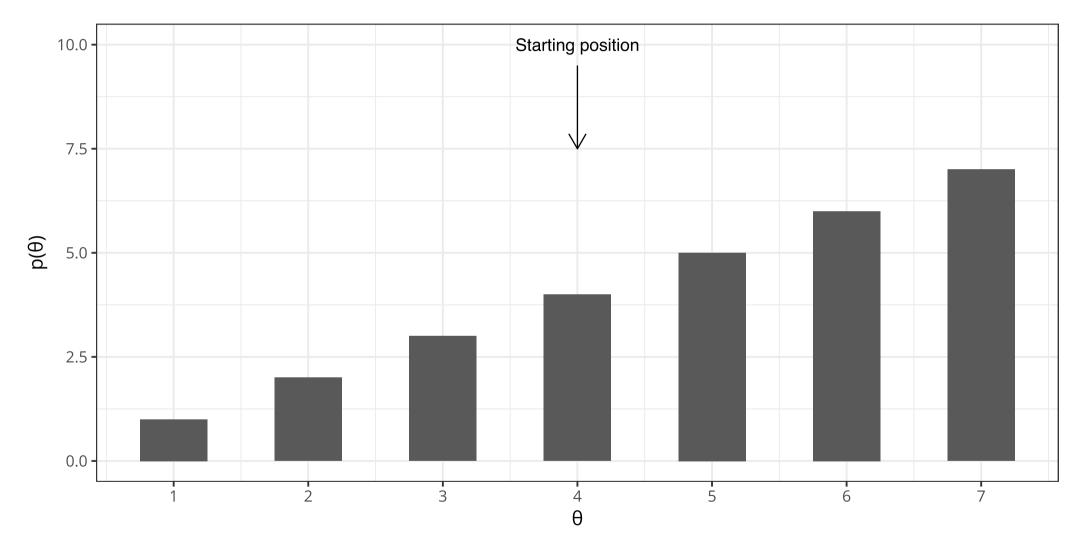
Principle:

- A proposal (a new position) is made on the basis of the current value of the parameter.
- A random draw is made to accept or reject the new position.

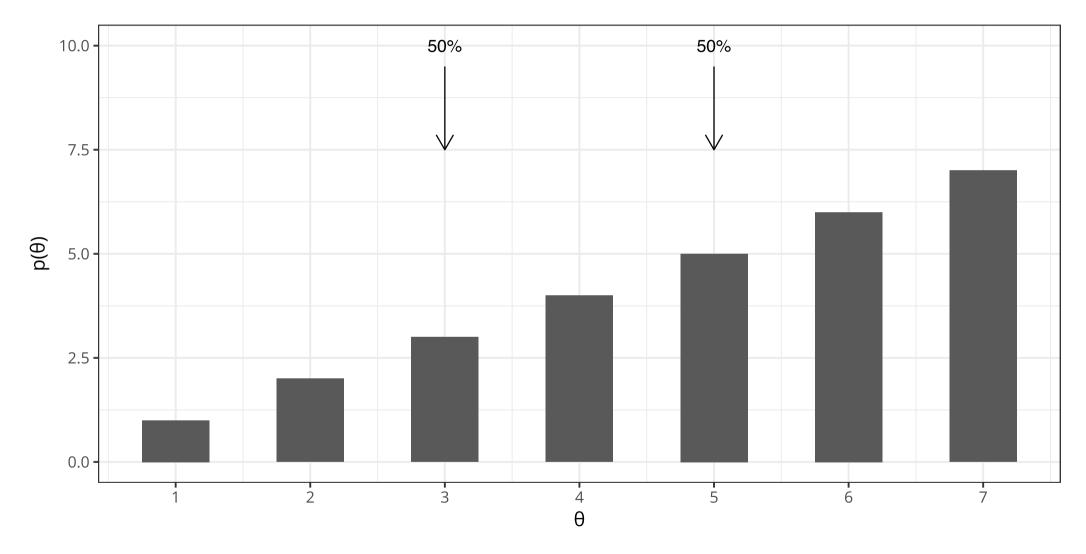
Two central ideas:

- The proposal should favour the most probable parameter values: These parameter values should be proposed more often.
- The proposal should be limited to values adjacent to the current parameter: The speed of convergence is increased by staying where the information is (i.e., by traversing the parameter space **locally** rather than **globally**).

Select a starting point (any value of θ can be selected).

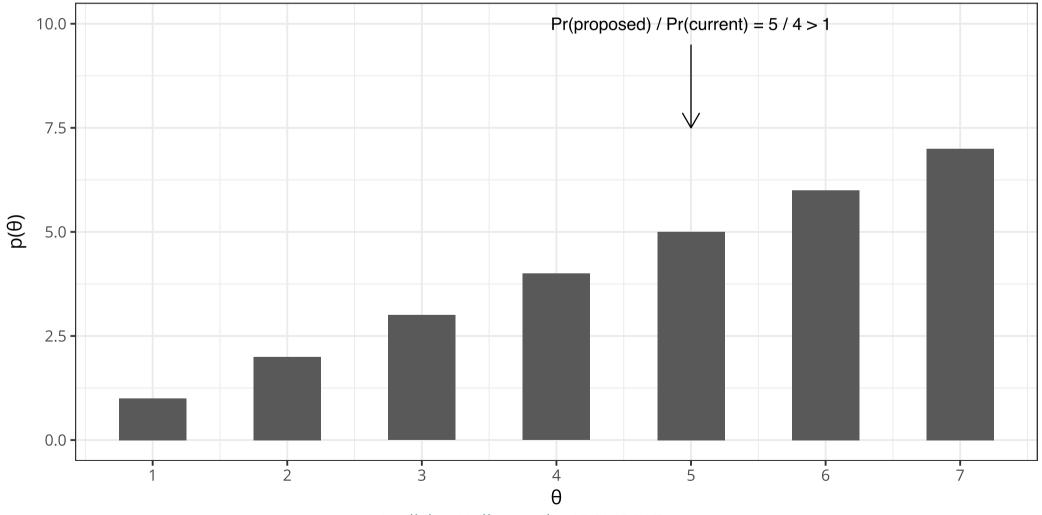


Propose a new position (i.e., a new value for θ) centred on the current value of θ .



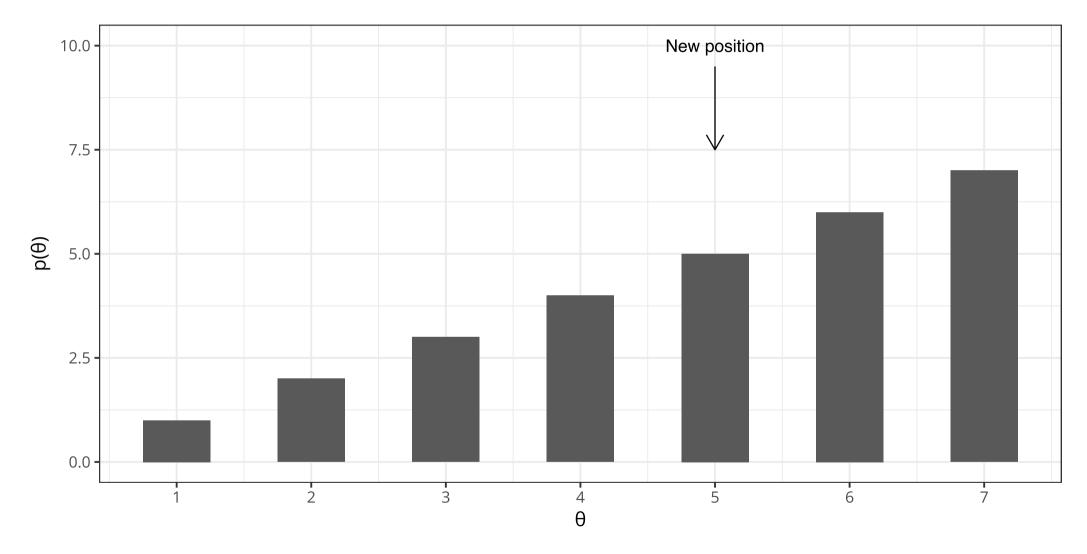
Calculate the **probability** of moving to the new position according to the following rule:

$$\Pr_{\text{move}} = \min\left(\frac{\Pr(\theta_{\text{proposed}})}{\Pr(\theta_{\text{current}})}, 1\right)$$



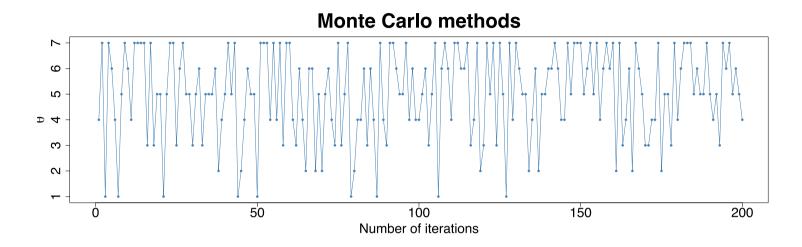
Ladislas Nalborczyk - IBSM2023

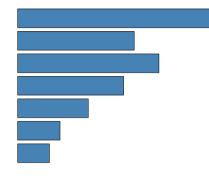
The accepted position becomes the new starting position and the algorithm is repeated.

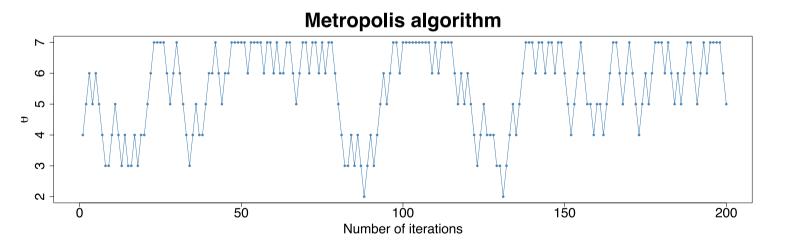


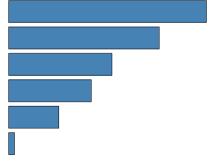
```
metropolis <- function (niter = 1e2, startval = 4) {</pre>
 1
 2
 3
       x <- rep(0, niter) # initialising the chain (vector) of length niter</pre>
       x[1] <- startval # defining the initial value of the parameter
 4
 5
        for (i in 2:niter) { # for each iteration
 6
 8
            current <- x[i - 1] # current value of the parameter</pre>
            proposal <- current + sample(c(-1, 1), size = 1)
 9
            # we ensure the proposed value is within the [1, 7] interval
10
            if (proposal < 1) proposal <- 1
11
            if (proposal > 7) proposal <- 7
12
            # computing the probability of moving to the proposed position
13
14
            prob move <- min(1, proposal / current)</pre>
            # we move (or not) according to this probability
15
            # x[i] <- ifelse(prob move > runif(n = 1, min = 0, max = 1), proposal, current)
16
17
            x[i] <- sample(c(proposal, current), size = 1, prob = c(prob move, 1 - prob move) )</pre>
18
19
20
21
        # returning the entire chain
22
        return (x)
23
24 }
```

Monte Carlo methods vs. Metropolis algorithm









Application to coin tosses (continuous case)

- The likelihood function: $p(y \mid \theta, n) \propto \theta^{y} (1 \theta)^{(n-y)}$
- Prior: $p(\theta \mid a, b) \propto \theta^{(a-1)} (1 \theta)^{(b-1)}$
- The parameter we want to estimate lies in the [0, 1] interval.

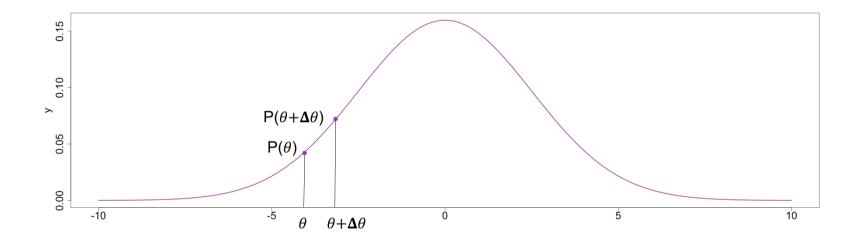
Problem n°1: How should we define the proposed move?

The proposal can be modelled by a normal distribution: $\Delta \theta \sim \text{Normal}(0, \sigma)$

- \longrightarrow The mean μ is 0: the proposed position is around the current value of the parameter
- \longrightarrow The variance remains to be determined, it controls the distance from the new value.

Problem n°2 : What probability should we use to accept or refuse the move? We use the product of the likelihood and the prior: $\theta^{y}(1-\theta)^{(n-y)}\theta^{(a-1)}(1-\theta)^{(b-1)}$

The probability of accepting the move is given by: $\Pr_{\text{move}} = \min\left(\frac{\Pr(\theta_{\text{current}} + \Delta\theta)}{\Pr(\theta_{\text{current}})}, 1\right)$

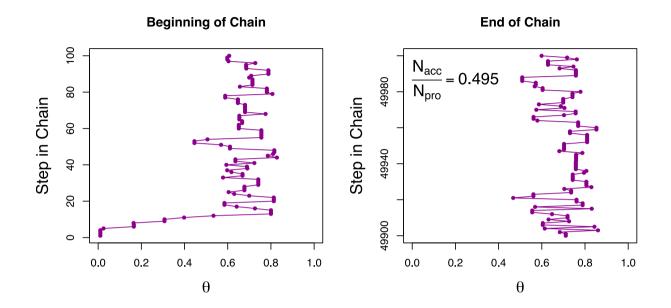


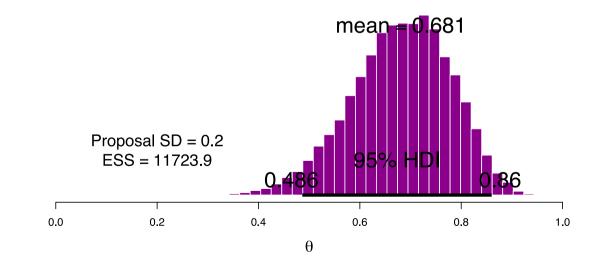
NOTE: The ratio $\frac{\Pr(\theta_{\text{current}} + \Delta \theta)}{\Pr(\theta_{\text{current}})}$ is the same whether you use the posterior distribution or the product of the prior and the likelihood (because the normalisation constant cancels out)!

- Select a starting point
- Choose $\theta \in [0, 1]$
- Only constraint: $Pr(\theta_{initial}) \neq 0$.
- \longrightarrow Choose a direction of movement
- Make a draw according to $Normal(0, \sigma)$
- \longrightarrow Accept or reject the proposed move, depending on the probability:

$$\Pr_{\text{move}} = \min\left(\frac{\Pr(\theta_{\text{current}} + \Delta\theta)}{\Pr(\theta_{\text{current}})}, 1\right)$$

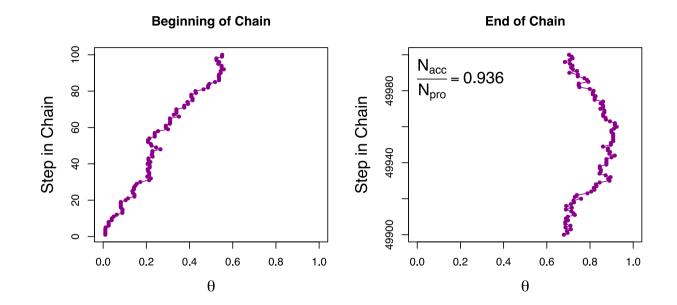
 \longrightarrow The calculated position becomes the new position

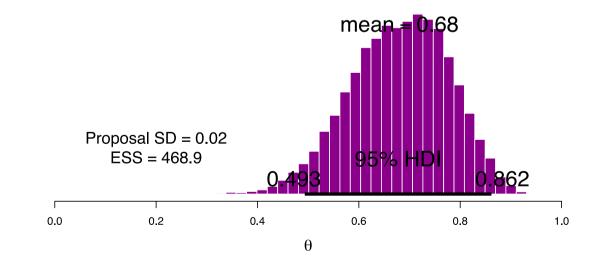




How do you choose σ for the proposal? There are two indicators that can be used to assess the quality of the sampling:

- ightarrow The ratio between the number of proposed moves and the number of accepted moves
- \rightarrow The effective sample size (i.e., the number of moves that are not correlated with the previous ones)

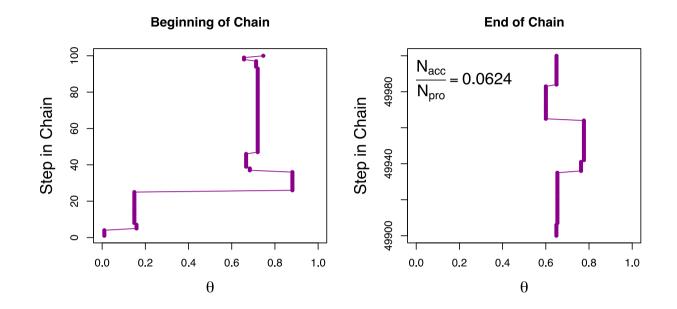


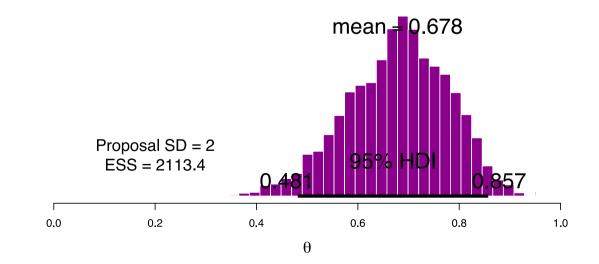


Influence of sigma

- \rightarrow All (or almost all) proposals are accepted.
- \rightarrow Few effective values...

It takes many iterations to get a satisfactory result...





Influence of sigma

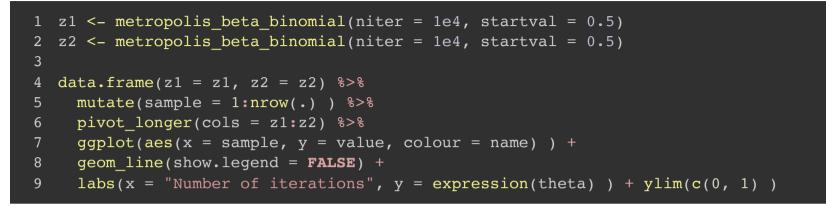
- \rightarrow Proposals are rarely accepted...
- \rightarrow Few effective values...

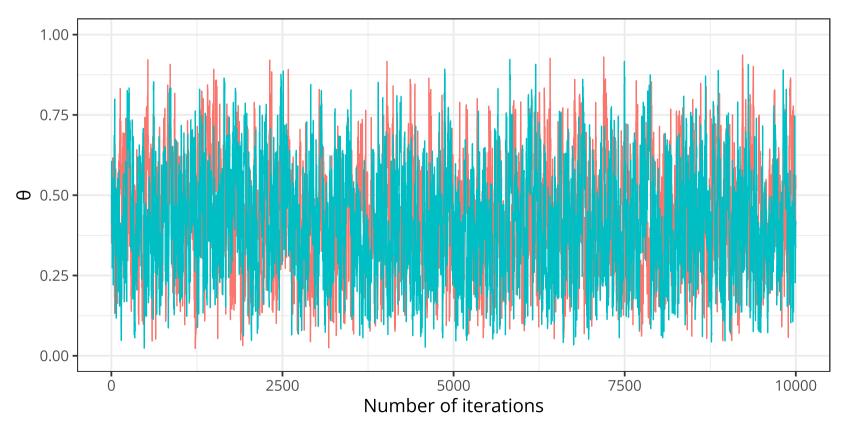
Many iterations are needed to obtain a satisfactory result...

Metropolis algorithm¹

```
1 metropolis beta binomial <- function (niter = 1e2, startval = 0.5) {
 2
        x <- rep(0, niter) # initialising the chain (vector) of length niter
 3
        x[1] <- startval # defining the starting/initial value
 4
 6
        for (i in 2:niter) {
            current <- x[i - 1] # current value of the parameter</pre>
 8
            current plaus <- dbeta(current, 2, 3) * dbinom(1, 2, current)</pre>
 9
            # proposal <- runif(n = 1, min = current - w, max = current + w) # proposed value</pre>
10
            proposal <- rnorm(n = 1, mean = current, sd = 0.1) # proposed value</pre>
11
            # ensuring that the proposed value is within the [0, 1] interval
12
            if (proposal < 0) proposal <-0
13
            if (proposal > 1) proposal <- 1
14
            proposal plaus <- dbeta(proposal, 2, 3) * dbinom(1, 2, proposal)</pre>
15
            # computing the probability of moving
16
            alpha <- min(1, proposal plaus / current plaus)
17
            # moving (or not) according to this probability
18
19
            x[i] \le \text{sample}(c(\text{current}, \text{proposal}), \text{size} = 1, \text{prob} = c(1 - alpha, alpha))
20
21
22
23
        return (x)
24
25
```

Metropolis algorithm





Ladislas Nalborczyk - IBSM2023

Metropolis algorithm

```
1 data.frame(z1 = z1, z2 = z2) %>%
```

- 2 pivot_longer(cols = z1:z2) %>%
- 3 rownames_to_column() %>%
- 4 mutate(rowname = as.numeric(rowname)) %>%

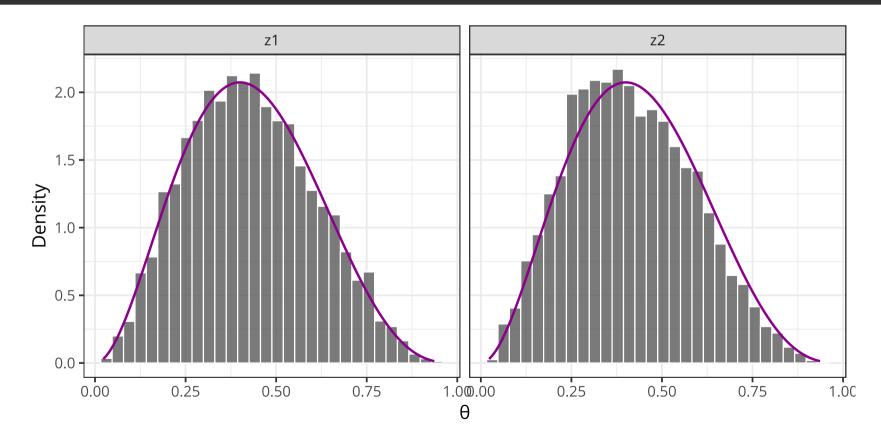
```
5 ggplot(aes(x = value)) +
```

6 geom_histogram(aes(y = ..density..), color = "white", alpha = 0.8) +

```
7 stat_function(fun = dbeta, args = list(3, 4), color = "magenta4", size = 1) +
```

8 facet_wrap(~name) +

```
9 labs(x = expression(theta), y = "Density")
```



Metropolis-Hastings algorithm

The Metropolis and Metropolis-Hastings (or Gibbs) algorithms perform poorly when the model parameters are strongly correlated. The **Hamiltonian Monte Carlo** algorithm solves these problems by taking into account the geometry of the posterior space. We adapt the proposal to the geometry of the posterior distribution around the current position.

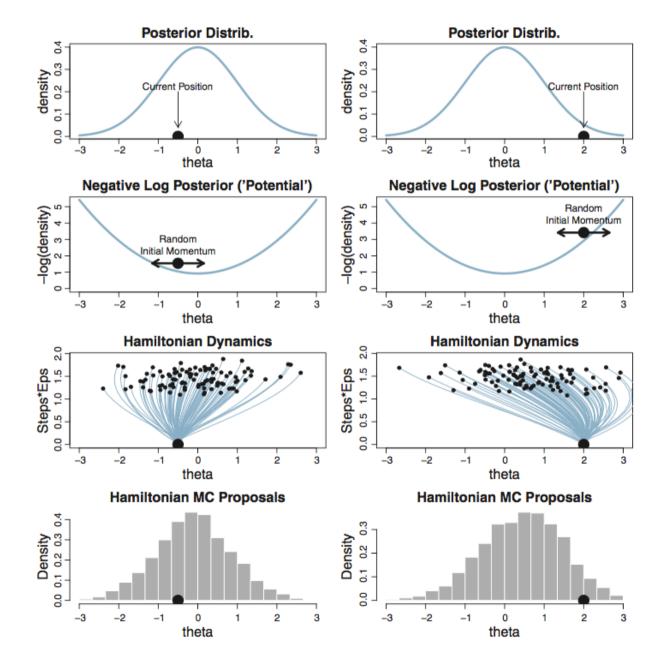
We use Hamiltonians which represent the total energy of a system. This energy is broken down into its **potential energy** (which depends on its position in parameter space) and its **kinetic energy**, which depends on its **momentum** *m*:

$$H(\theta, m) = \underbrace{U(\theta)}_{\text{potential energy}} + \underbrace{KE(m)}_{\text{kinetic energy}}$$

The potential energy is given by the negative of the log of the posterior density (non-normalised):

 $U(\theta) = -\log[p(\text{data} \mid \theta) \times p(\theta)]$

As the posterior density increases, the potential energy decreases (i.e., it becomes more negative).

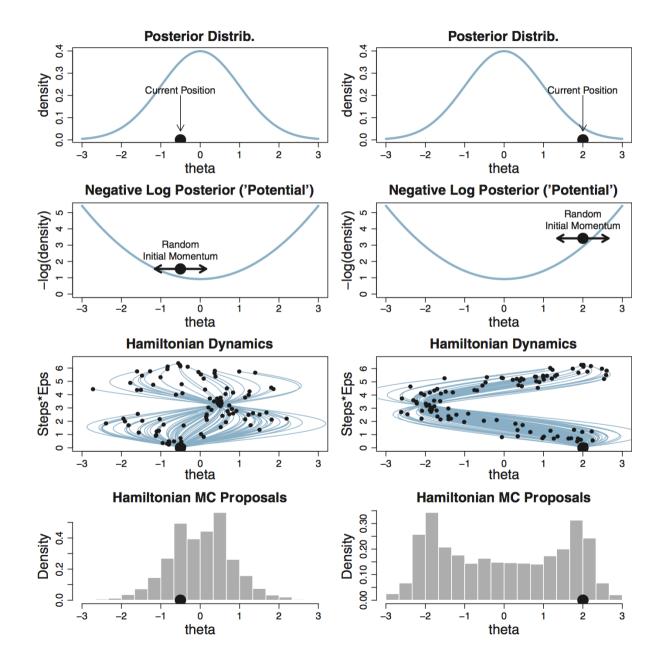


- Select a starting point θ_0 : Any value of θ in posterior space can be selected.
- The force with which the ball is thrown (momentum *m*) is randomly generated, for example from a multivariate normal distribution: $m \sim \text{MVNormal}(\mu, \Sigma)$.
- A trajectory approximation algorithm (e.g., leapfrog) is used to estimate the trajectory and final position of the ball in posterior space for a given trajectory duration.
- After a certain time, the final position of the ball and its moment are recorded.
- The proposed movement is accepted or rejected according to the following probability (where ϕ (phi) is the momentum associated with the marble):

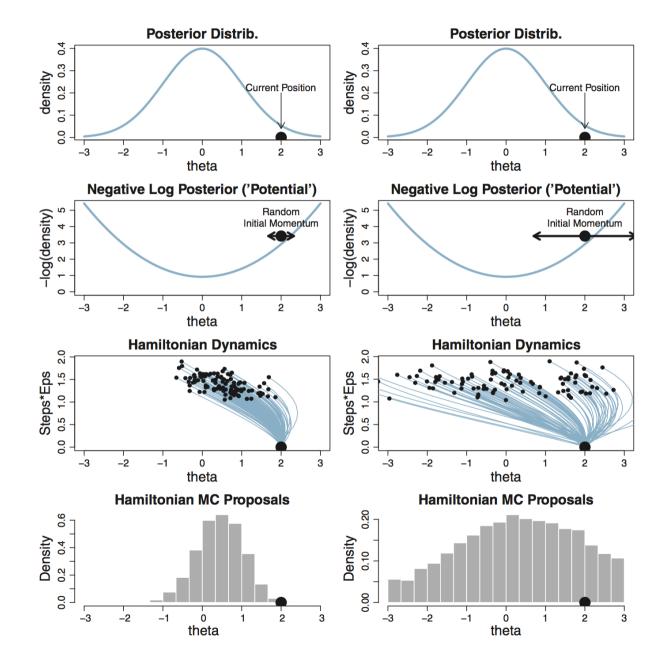
$$\Pr_{\text{move}} = \min\left(\frac{p(\text{data} \mid \theta_{\text{proposed}}) p(\phi_{\text{proposed}})}{p(\text{data} \mid \theta_{\text{current}}) p(\phi_{\text{current}})}, 1\right)$$

• We save the new position and start again...

Influence of trajectory duration...



Influence of variability in the initial momentum...



Assessing MCMCs

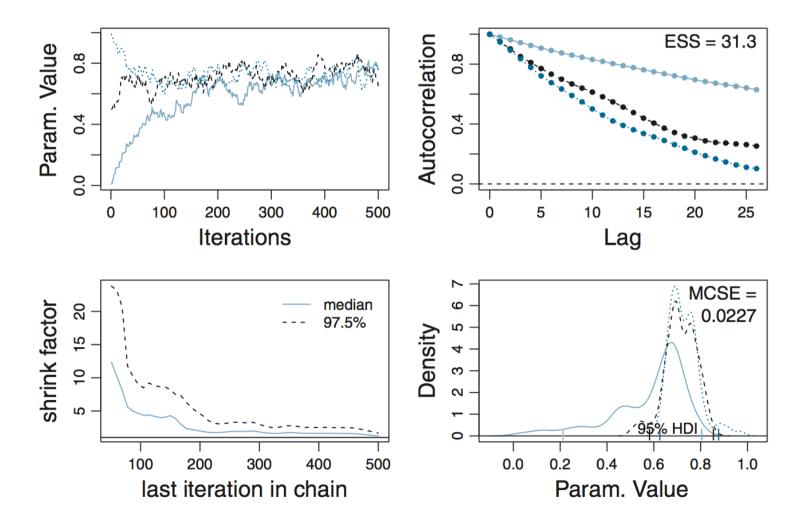
These methods may not converge to the "true" posterior distribution, due to limited computation time, the parametrisation of certain hyper-parameters (e.g., variance of the normal distribution of the proposal, or variance of the initial moment for HMC).

These methods produce chains of parameter values (samples). The use of a particular MCMC algorithm to sample the posterior distribution is based on three objectives:

- The chain values must be representative of the posterior distribution. These values must not depend on the starting point. The values should not be restricted to a particular region of the parameter space.
- The chain must be long enough to ensure the accuracy and stability of the result. The central tendency and HDI calculated from the chain must not change if the procedure is restarted.
- The chain should be generated efficiently (i.e., with as few iterations as possible).

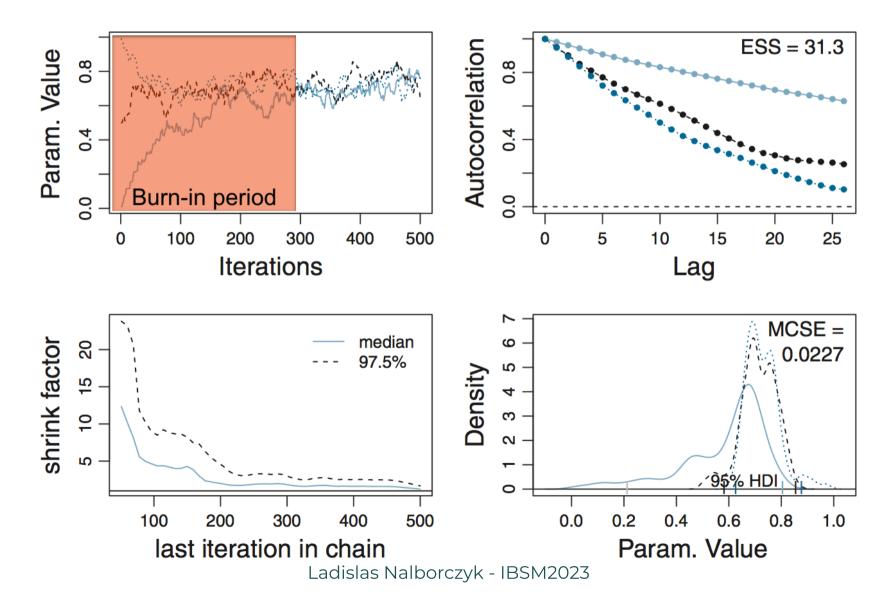
Assessing MCMCs - Representativeness

- Visual verification of trajectories: Chains must occupy the same space, convergence does not depend on the starting point, no chain must have a particular trajectory (e.g., cyclic).
- Visual check of densities: Densities must overlap.



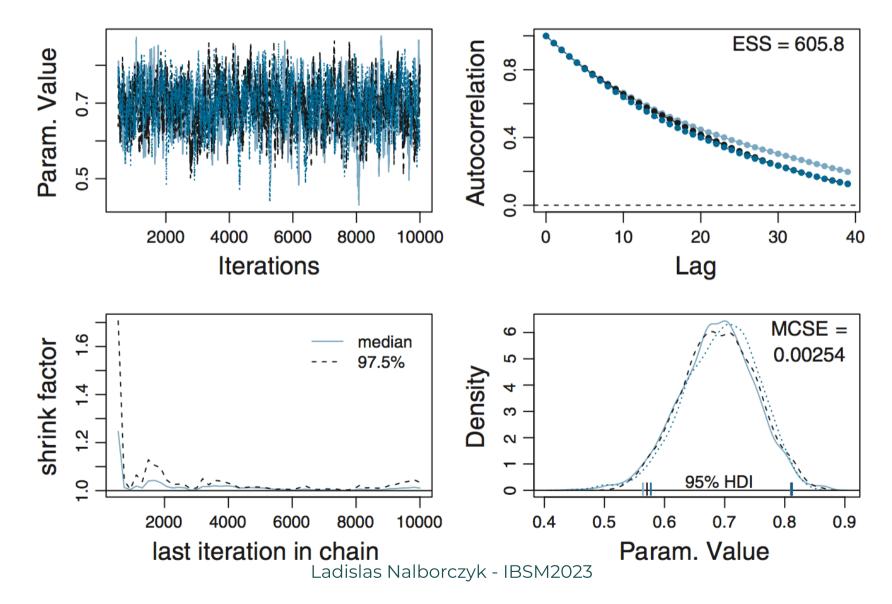
Assessing MCMCs - Representativeness

This display shows only the first 500 iterations. The trajectories do not overlap at the beginning (orange zone). The density is also affected. In practice, these first iterations are suppressed ("burn-in" or "warm-up" period).



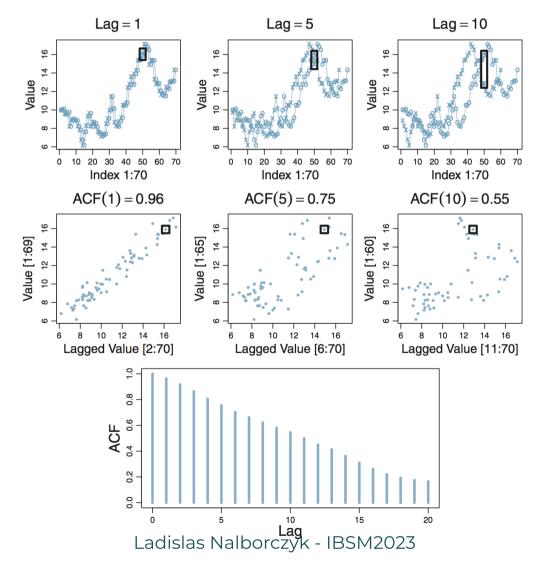
Assessing MCMCs - Representativeness

Numerical verification of chains: The **shrink factor** (also known as \hat{R} or **Rhat**) is the ratio between the inter-chain and intra-chain variance. This value should ideally tend towards 1 (it is considered acceptable up to 1.01).



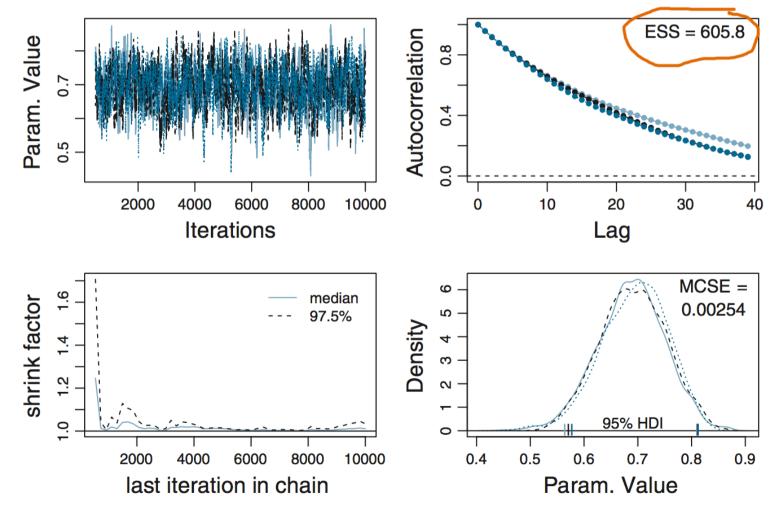
Assessing MCMCs - Stability and precision

The longer the chain, the more accurate and stable the result. If the chain "lingers" on each position, and the number of iterations remains the same, then we lose precision. It will need more iterations to achieve the same level of accuracy. Autocorrelation is the correlation of the chain with itself but shifted by k iterations (lag).



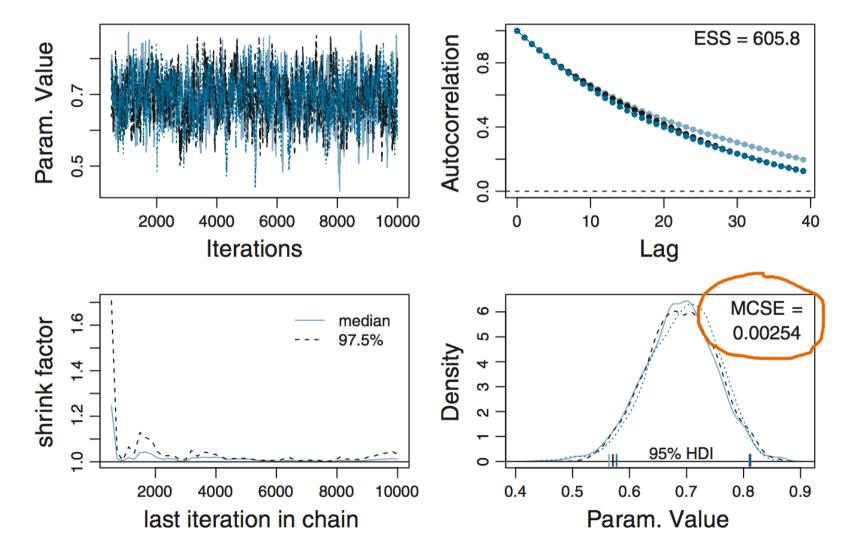
Assessing MCMCs - Stability and precision

The autocorrelation function is shown for each chain (top right). Another result reflects the precision of the sample: the effective sample size, $\text{ESS} = \frac{N}{1+2\sum_k \text{ACF}(k)}$. It represents the size of a non-autocorrelated sample extracted from the sum of all the chains. For reasonable HDI accuracy, an ESS greater than 1000 is recommended.



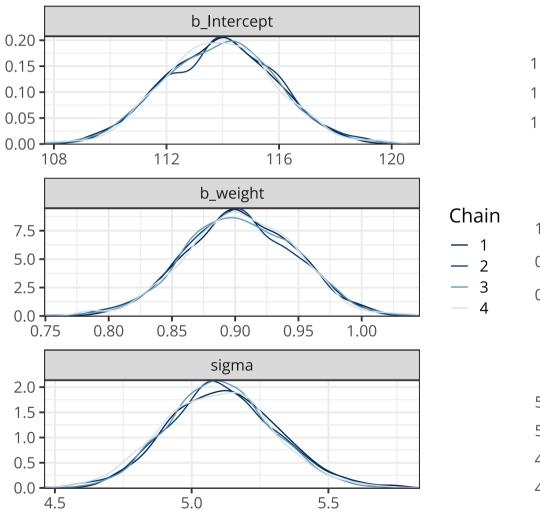
Assessing MCMCs - Stability and precision

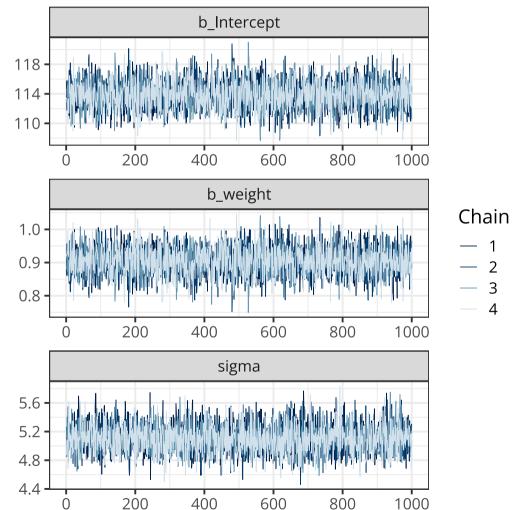
The standard error of a set of samples is given by : $SE = SD/\sqrt{N}$. As N increases, the standard error decreases. We can generalise this idea to Markov chains: $MCSE = SD/\sqrt{ESS}$. For the central tendency to be reasonably accurate, this value must be low.



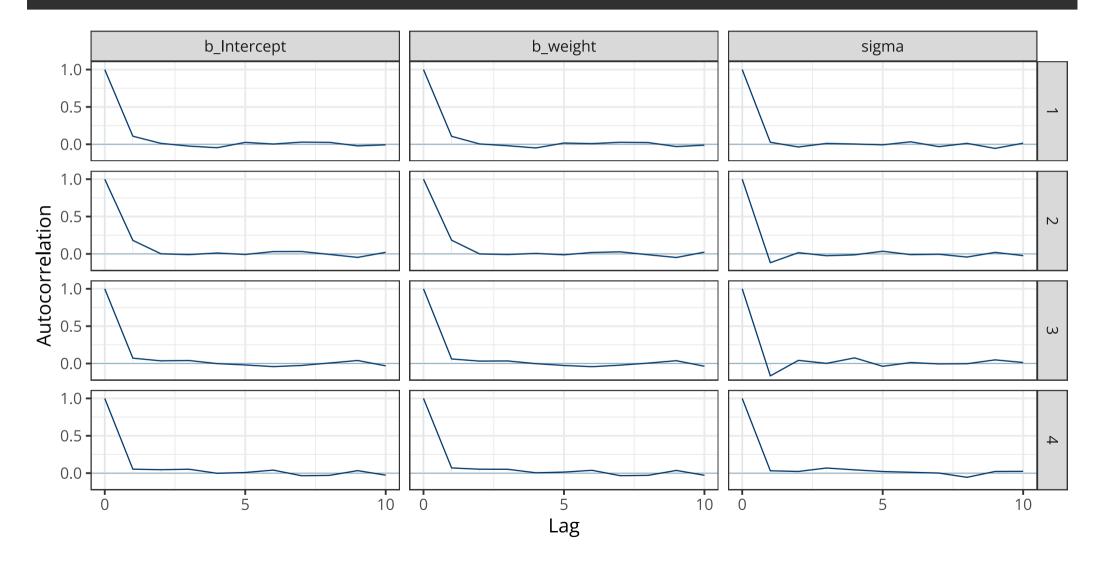
```
1 library(tidyverse)
2 library(imsb)
3 library(brms)
 4
5 d <- open data(howell)
6 d2 <- d %>% filter(age >= 18)
 7
   priors <- c(
 8
     prior(normal(150, 20), class = Intercept),
 9
     prior(normal(0, 10), class = b),
10
     prior(exponential(0.01), class = sigma)
11
12
13
14
   mod1 <- brm(</pre>
     formula = height ~ 1 + weight,
15
16
     prior = priors,
     family = gaussian(),
17
18
     data = d2,
19
     chains = 4, # number of chains
     iter = 2000, # total number of iteration (per chain)
20
21
     warmup = 1000, # number of warm-up iterations
22
     thin = 1 # thinning (1 = no thinning)
23
```

- 1 # combo can be hist, dens, dens_overlay, trace, trace_highlight...
- 2 # cf. https://mc-stan.org/bayesplot/reference/MCMC-overview.html
- 3 plot(x = mod1, combo = c("dens_overlay", "trace"))





- 1 library(bayesplot)
- 2 post <- posterior_samples(mod1, add_chain = TRUE)</pre>
- 3 post %>% mcmc_acf(pars = vars(b_Intercept:sigma), lags = 10)



1 summary(mod1)

<pre>Family: gaussian Links: mu = identity; sigma = identity Formula: height ~ 1 + weight Data: d2 (Number of observations: 352) Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000</pre>
Population-Level Effects:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
Intercept 113.90 1.95 110.18 117.70 1.00 3135 2949
weight 0.90 0.04 0.82 0.99 1.00 3140 2817
Family Specific Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sigma 5.11 0.20 4.74 5.51 1.00 3940 2887
519 100 2007 100 2007
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

 $\begin{bmatrix} \\ \\ \end{bmatrix}$

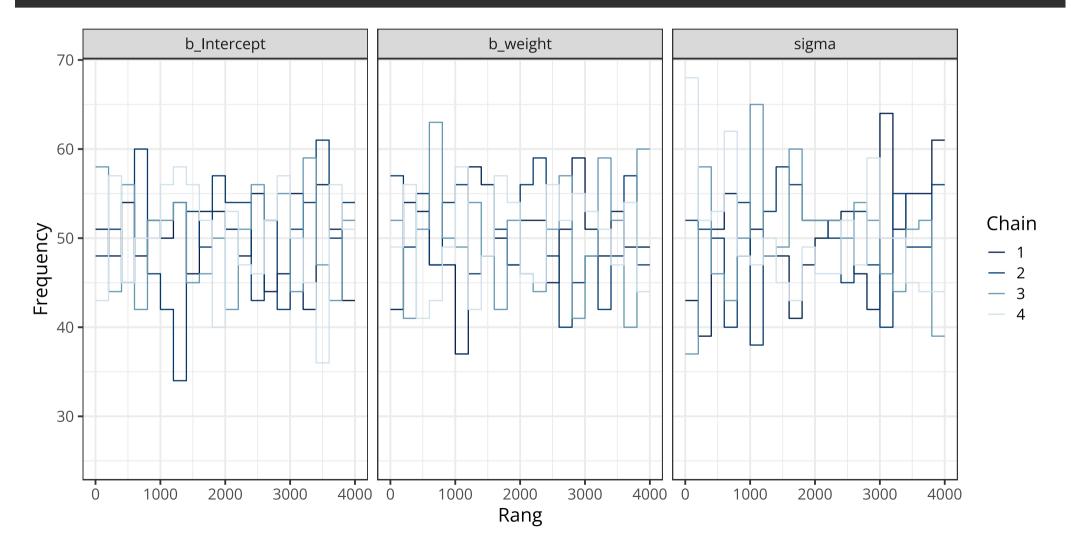
Bulk-ESS refers to the ESS calculated on the distribution of samples normalised by their rank, and more specifically around the central position of this distribution (e.g., mean or median). It is recommended that the Bulk-ESS be at least 100 times greater than the number of chains (i.e., for 4 chains, the Bulk-ESS should be at least 400).

Tail-ESS gives the minimum of the ESS calculated for the quantiles at 5% and 95% (i.e., for the tails of the distribution of samples normalised by their rank). This value must be high if we attach importance to estimating extreme values (for example to compute credible intervals).

When things go wrong, see these <u>recommendations</u> from Stan's team about priority choices, or this <u>guide</u> about frequent error messages. See also <u>recent article</u> or this <u>blog post</u> introducing these new tools.

1 post %>% # rank plots

- 2 mcmc_rank_overlay(pars = vars(b_Intercept:sigma)) +
- 3 labs(x = "Rang", y = "Frequency") +
- 4 coord_cartesian(ylim = c(25, NA))



Summary

We have introduced and discussed the use of MCMCs to obtain samples from the (un-normalised) posterior distribution. These samples can then be used to calculate various statistics for the posterior distribution (e.g., mean, median, credible interval).

The Metropolis-Hastings algorithm can be used for any problem for which a likelihood can be calculated. However, although this algorithm is simple to code, its convergence can be very slow... Furthermore, this algorithm does not work well when there are strong correlations between the different parameters...

The HMC algorithm avoids these problems by taking into account the geometry of the posterior space as it is explored (i.e., when the algorithm decides where to go next). This algorithm converges much faster and fewer samples will be needed to approximate the posterior distribution.

The result of Bayesian inference is therefore, in practice, a set of samples obtained using MCMCs. The reliability of these estimates must be assessed by verifying (visually and numerically) that the MCMCs have indeed converged towards an optimal solution.

Generalised linear model

 $y_i \sim \text{Normal}(\mu_i, \sigma)$ $\mu_i = \alpha + \beta_1 \times x_{1i} + \beta_2 \times x_{2i}$

The linear Gaussian model discussed in Course n°02 is characterised by a number of assumptions, including the following:

- The residuals are distributed according to a Normal distribution.
- The variance of this Normal distribution is constant (homogeneity of variance).
- The predictors act on the mean of this distribution.
- The mean follows a linear or multi-linear model.

This model (the choice of a Normal distribution) implies several constraints, for example:

- The observed data are defined on a continuous space.
- This space is not bounded.

How can we model data that do not respect these constraints? For example, the proportion of correct answers to a test (bounded between 0 and 1), a response time (restricted to positive values and often distributed in an approximately lognormal manner), a number of avalanches...

We have already encountered a different model: the Beta-Binomial model (cf. Course n°01).

 $y_i \sim \text{Binomial}(n, p)$ $p \sim \text{Beta}(a, b)$

The observed data is binary (e.g., 0 vs. 1) or the result of a sum of binary observations (e.g., a proportion).
The prior probability of success (obtaining 1) is characterised by a Beta distribution.
The probability of success does not depend on any predictor.

This model implies two constraints:

- The observed data are defined in a discrete space.
- This space is bounded.

How could predictors be added to this model?

Generalised linear model

 $y_i \sim \text{Binomial}(n, p_i)$ $f(p_i) = \alpha + \beta \times x_i$

Objectives:

- Accounting for discrete data (e.g., failure/success) generated by a single process.
- Introducing predictors into the model.

Two changes from the Gaussian model:

- The use of a Binomial probability distribution.
- The linear model is no longer used to directly describe one of the parameters of the distribution, but a function of this parameter (the Gaussian model can also be considered to have been formulated with an identity link function).

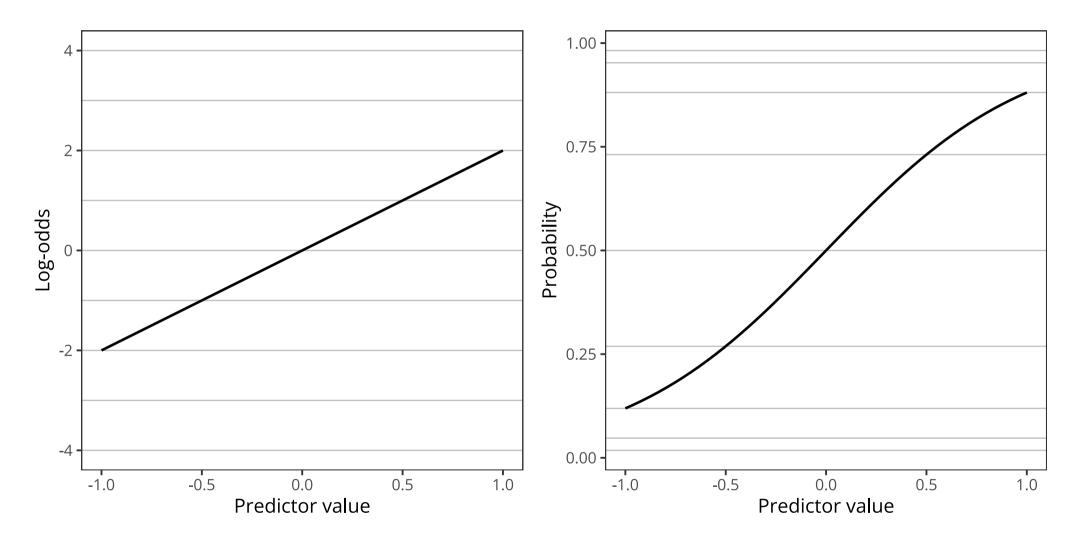
Link function

We use a link function to map the space of a linear (unbounded) model to the space of a potentially bounded parameter such as a probability, defined on the interval [0, 1].



Link function

We use a link function to map the space of a linear (unbounded) model to the space of a potentially bounded parameter such as a probability, defined on the interval [0, 1].



Logistic regression

The logit function of the binomial GLM (known as "log-odds"):

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right)$$

The odds of an event are the ratio between the probability of the event occurring and the probability of it not occurring. The logarithm of this odds is predicted by a linear model.

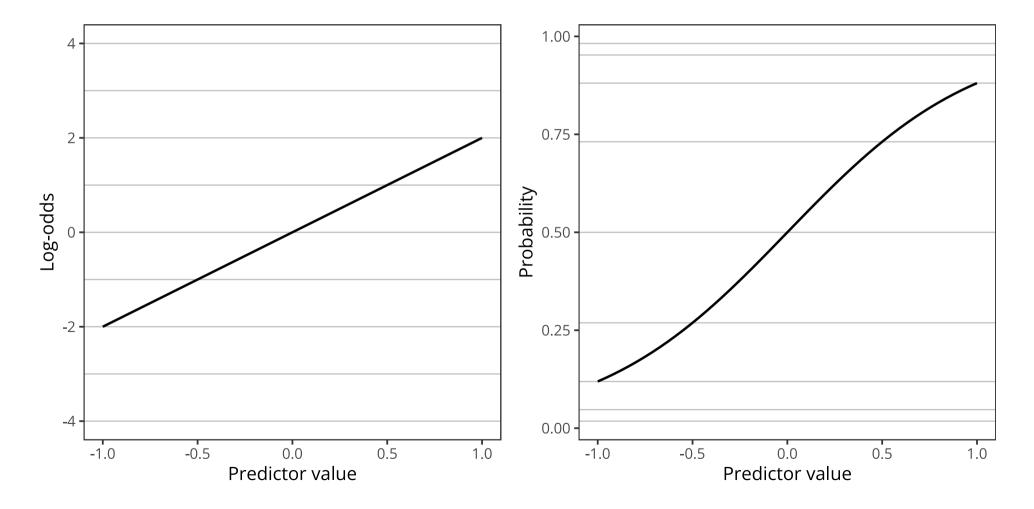
$$\log\left(\frac{p_i}{1-p_i}\right) = \alpha + \beta \times x_i$$

To retrieve the probability of an event, we use the **inverse link** function, the **logistic** (or logit-inverse) function:

$$p_i = \frac{\exp(\alpha + \beta \times x_i)}{1 + \exp(\alpha + \beta \times x_i)}$$

Complications caused by the link function

Such link functions pose problems of interpretation: a change of one unit in a predictor no longer has a constant effect on the probability but impacts it more or less according to its distance from the origin. When x = 0, an increase of half a unit (i.e., $\Delta x = 0.5$) results in an increase in probability of 0.25. Then, each half-unit increase results in a smaller and smaller increase in *p*...



Complications caused by the link function

Second complication: this link function "forces" each predictor to interact with itself and with ALL the other predictors, even if the interactions are not explicit...

In a Gaussian model, the rate of change of y as a function of x is given by $\partial(\alpha + \beta x) / \partial x = \beta$ and does not depend on x (i.e., β is constant).

In a binomial GLM (with a logit link function), the probability of an event is given by the logistic function:

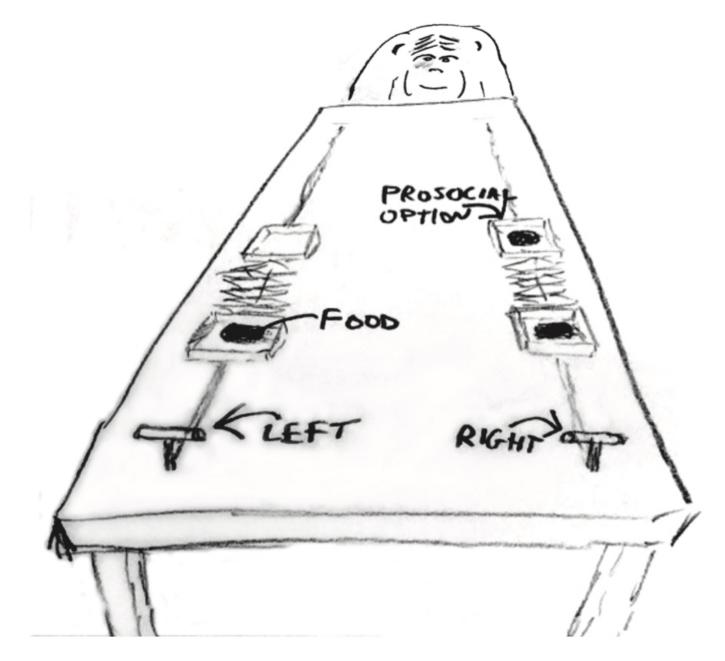
$$p_i = \frac{\exp(\alpha + \beta \times x_i)}{1 + \exp(\alpha + \beta \times x_i)}$$

And the rate of change of p as a function of the predictor x is given by:

$$\frac{\partial p}{\partial x} = \frac{\beta}{2(1 + \cosh(\alpha + \beta \times x))}$$

We can see that the variation on p due to the predictor x is a function of the predictor x, and also depends on the value of α ... !

Logistic regression example: Prosociality in chimpanzees



Logistic regression example

```
1 library(tidyverse)
2 library(imsb)
3
4 df1 <- open data(chimpanzees)
5 str(df1)
data.frame': 504 obs. of 8 variables:
$ actor
            : int 111111111...
$ recipient : int NA ...
$ condition
            : int 0000000000...
$ block
            : int 1 1 1 1 1 1 2 2 2 2 ...
$ trial
            : int 2 4 6 8 10 12 14 16 18 20 ...
$ prosoc left : int 0 0 1 0 1 1 1 1 0 0 ...
$ chose prosoc: int 1 0 0 1 1 1 0 0 1 1 ...
```

\$ pulled left : int 0 1 0 0 1 1 0 0 0 0 ...

- pulled_left: 1 when the chimpanzee pulled the left lever, 0 otherwise.
- prosoc_left: 1 when the left lever was associated with the prosocial option, 0 otherwise.
- condition: 1 when a partner was present, 0 otherwise.

Logistic regression example

The question

We want to know whether the presence of a partner chimpanzee encourages the chimpanzee to press the prosocial lever, that is, the lever that gives food to both individuals. In other words, is there an interaction between the effect of laterality and the effect of the presence of another chimpanzee on the probability of pulling the left lever?

The variables

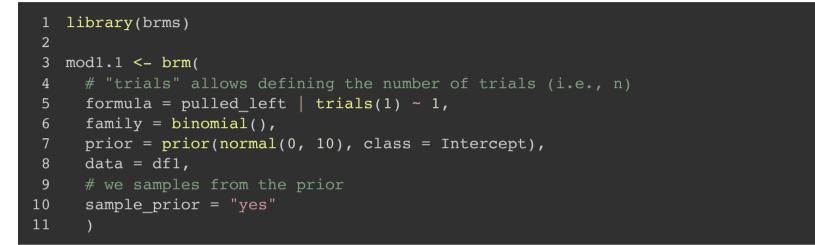
- Observations (pulled_left): These are Bernoulli variables (0 or 1).
- Predictor (prosoc_left): Are the two meals on the left or the right?
- Predictor (condition): Is a partner present?

Logistic regression example

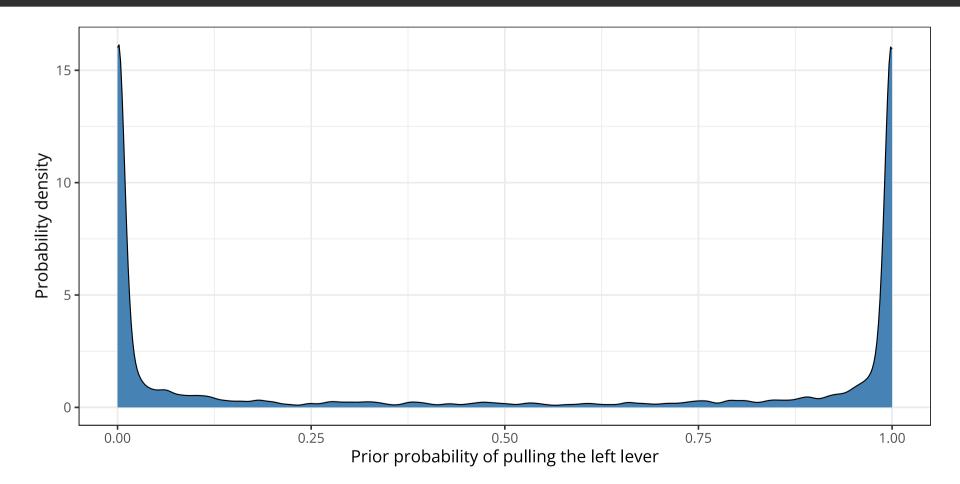
 $L_i \sim \text{Binomial}(1, p_i)$ (equivalent to) $L_i \sim \text{Bernoulli}(p_i)$ $\log it(p_i) = \alpha$ $\alpha \sim \text{Normal}(0, \omega)$

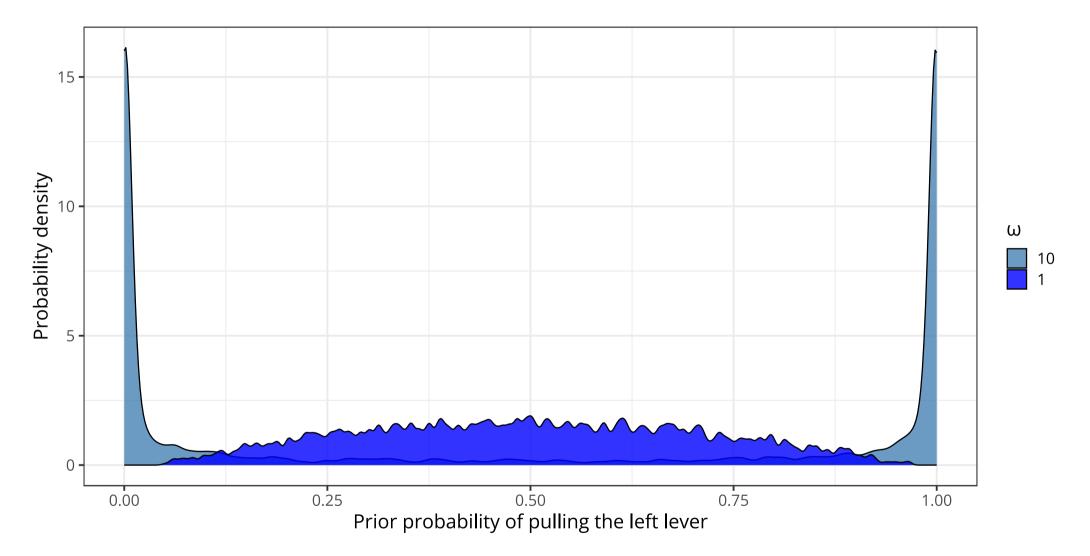
Mathematical model without any predictor. How do you pick a value for ω ...?

We write the previous model with **brms** and sample from the prior to check that the model's predictions (based on the prior and likelihood function alone) match our expectations.

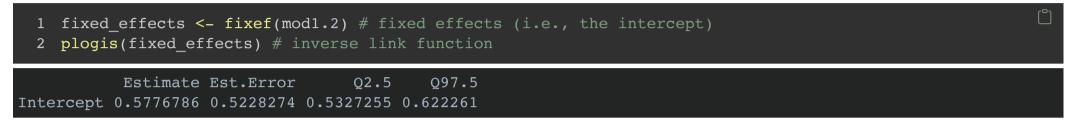


- 1 # retrieving samples from the prior predictive distribution
- 2 prior_draws(x = mod1.1) %>%
- 3 # applying the inverse link function
- 4 mutate(p = brms::inv_logit_scaled(Intercept)) %>%
- 5 ggplot(aes(x = p)) +
- 6 geom_density(fill = "steelblue", adjust = 0.1) +
- 7 labs(x = "Prior probability of pulling the left lever", y = "Probability density")



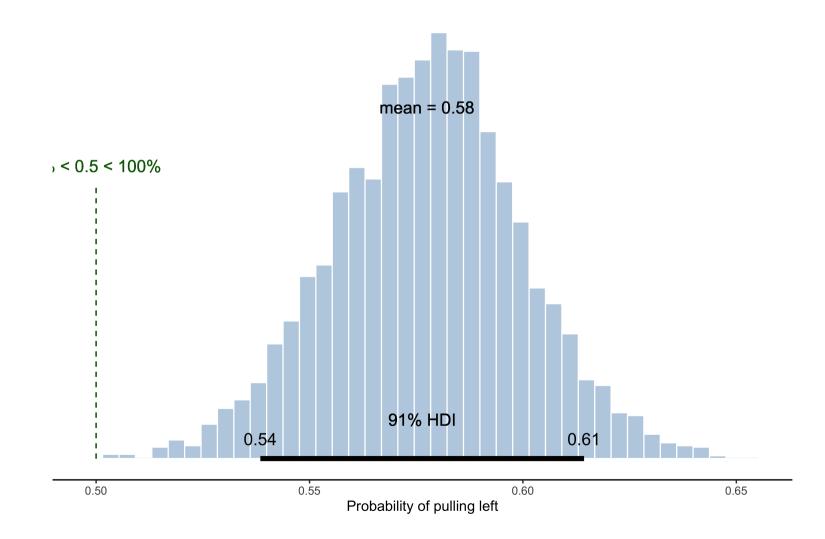


The intercept is interpreted in the log-odds space... to interpret it as a probability, we should apply the inverse link function. We can use the **brms::inv_logit_scaled()** or the **plogis()** function.



On average (without considering the predictors), it seems that chimpanzees are slightly more likely to pull the left lever than the right one...

- 1 post <- as_draws_df(x = mod1.2) # retrieving the posterior samples</pre>
- 2 intercept_samples <- plogis(post\$b_Intercept) # posterior samples for the intercept</pre>
- 3
- 4 posterior_plot(samples = intercept_samples, compval = 0.5) + labs(x = "Probability of pulling left")



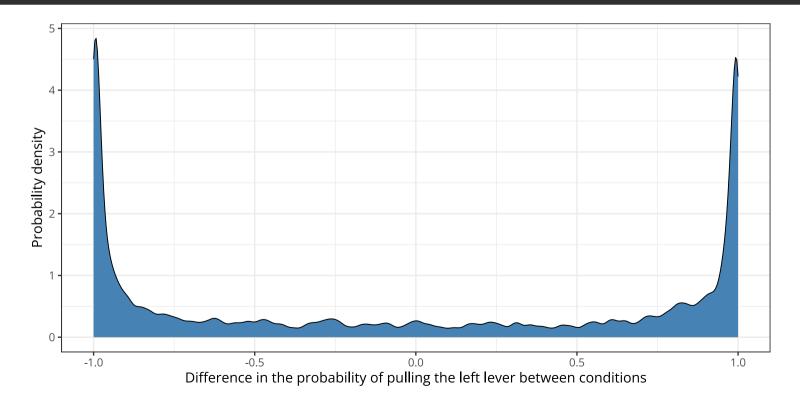
How can we pick a value for ω (in the priors on the slopes)?

 $L_i \sim \text{Binomial}(1, p_i)$ $\text{logit}(p_i) = \alpha + \beta_P P_i + \beta_C C_i + \beta_{PC} P_i C_i$ $\alpha \sim \text{Normal}(0, 1)$ $\beta_P, \beta_C, \beta_{PC} \sim \text{Normal}(0, \omega)$

- *L_i* indicates whether the monkey pulled the left lever (pulled_left).
- P_i indicates whether the left side corresponded to the prosocial side.
- C_i indicates the presence of a partner.

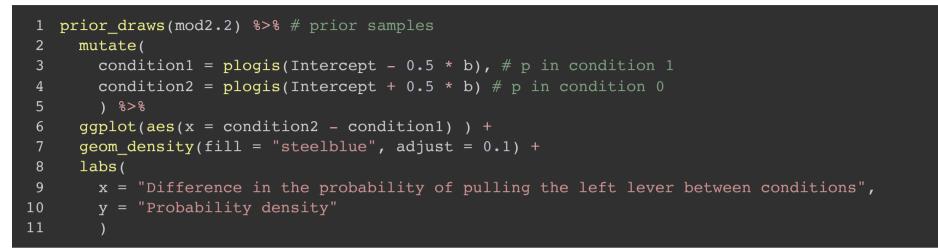
```
1 # recoding predictors
2 df1 <- df1 %>%
     mutate(
 3
       prosoc left = ifelse(prosoc left == 1, 0.5, -0.5),
 4
       condition = ifelse(condition == 1, 0.5, -0.5)
 6
 8 priors <- c(
     prior(normal(0, 1), class = Intercept),
 9
     prior(normal(0, 10), class = b)
10
11
12
13 mod2.1 <- brm(
     formula = pulled_left | trials(1) ~ 1 + prosoc left * condition,
14
     family = binomial,
15
16
     prior = priors,
     data = df1,
17
     sample prior = "yes"
18
19
```

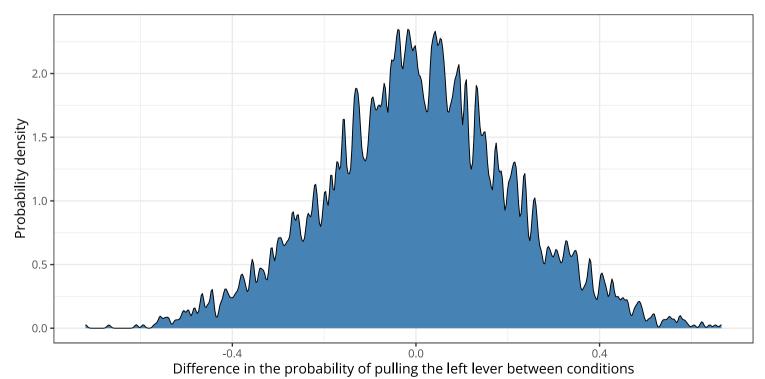
```
prior draws(x = mod2.1) %>% # prior samples
 1
 2
     mutate(
       condition1 = plogis(Intercept - 0.5 * b), # p in condition 1
 3
       condition2 = plogis(Intercept + 0.5 * b) # p in condition 0
 4
       ) %>%
 6
     ggplot(aes(x = condition2 - condition1)) + # plotting the difference
     geom density(fill = "steelblue", adjust = 0.1) +
     labs(
 8
       x = "Difference in the probability of pulling the left lever between conditions",
9
       y = "Probability density"
10
11
```



Ladislas Nalborczyk - IBSM2023

```
1 priors <- c(
     prior(normal(0, 1), class = Intercept),
 2
     prior(normal(0, 1), class = b)
 4
6 mod2.2 <- brm(
     formula = pulled left | trials(1) ~ 1 + prosoc left * condition,
     family = binomial,
 8
     prior = priors,
 9
     data = df1,
10
11
     sample prior = "yes"
12
```





Ladislas Nalborczyk - IBSM2023

1 summary(mod2.2)

<pre>Family: binomial Links: mu = logit Formula: pulled_left trials(1) ~ 1 + prosoc_left * condition Data: df1 (Number of observations: 504) Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000</pre>												
Population-Level E	ffects:											
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS						
Intercept	0.33	0.09	0.15	0.50	1.00	4652						
prosoc_left	0.55	0.18	0.20	0.91	1.00	4661						
condition	-0.19	0.18	-0.56	0.16	1.00	5310						
prosoc_left:condit	ion 0.17	0.35	-0.52	0.84	1.00	4909						
- -	Tail_ESS											
Intercept	3142											
prosoc left	2898											
condition	2737											
prosoc_left:condit	ion 3222											
Draws were sampled	ucina compli	ng(NIITS)	For oach	naramotor	- Dul	וף הככ						

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential

Relative effects vs. absolute effects

The linear model does not directly predict the probability but the log-odds of the probability:

$$logit(p_i) = log\left(\frac{p_i}{1-p_i}\right) = \alpha + \beta \times x_i$$

Two types of effect can be distinguished and interpreted.

Relative effect: The relative effect relates to the logarithm of the probability ratio. It indicates the proportion of change induced by the predictor on the **chances** of success (or rather, on the odds). It tells us nothing about the probability of the event, in absolute terms.

Absolute effect: Effect which directly affects the probability of an event. It depends on all the parameters of the model and gives us the effective impact of a change of one unit of a predictor (in probability space).

Relative effect

This is a **proportion** of change induced by the predictor on the odds ratio. Illustration with a model without interaction.

$$\log\left(\frac{p_i}{1-p_i}\right) = \alpha + \beta x_i$$
$$\frac{p_i}{1-p_i} = \exp(\alpha + \beta x_i)$$

The proportional odds q of an event is the number by which the odds are multiplied when x_i increases by one.

$$q = \frac{\exp(\alpha + \beta(x_i + 1))}{\exp(\alpha + \beta x_i)} = \frac{\exp(\alpha)\exp(\beta x_i)\exp(\beta)}{\exp(\alpha)\exp(\beta x_i)} = \exp(\beta)$$

When q = 2 (for example), a one-unit increase in x_i doubles the odds.

Interpreting relative effects

The relative effect of a parameter **also depends on the other parameters**. In the previous model, the predictor prosoc_left increases the log odds by about 0.54, which translates into an increase in odds of $exp(0.54) \approx 1.72$, that is, an increase in odds of about 72%.

Let's assume that the intercept $\alpha = 4$.

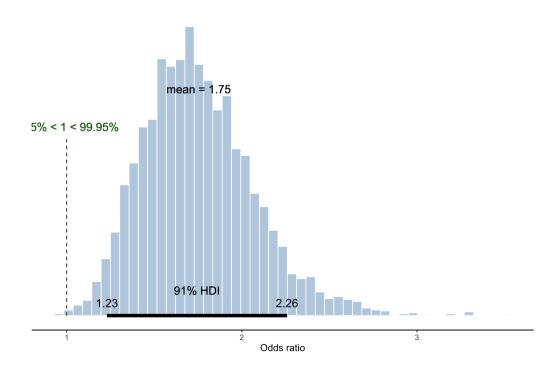
- The probability of pulling the lever without further consideration is $logit^{-1}(4) \approx 0.98$.
- Considering the effect of prosoc_left, we obtain $logit^{-1}(4 + 0.54) \approx 0.99$.

An increase of 72% in the log-odds translates into an increase of just 1% in the effective probability... Relative effects can lead to misinterpretations when the scale of the variable being measured is not taken into account.

Interpreting relative effects

<pre>1 fixef(mod2.2) # retrieving estimates for "fixed effects"</pre>										
	Estimate Est.Error Q2.5 Q97.5									
Intercept	0.3272953 0.09039531 0.1494670 0.5041133									
prosoc_left	0.5457259 0.17928616 0.2024788 0.9110874									
condition	-0.1915692 0.18382309 -0.5581443 0.1578334									
$\verb"prosoc_left:condition"$	0.1662294 0.34577459 -0.5209200 0.8445441									
		۲ ^۵ ۱								

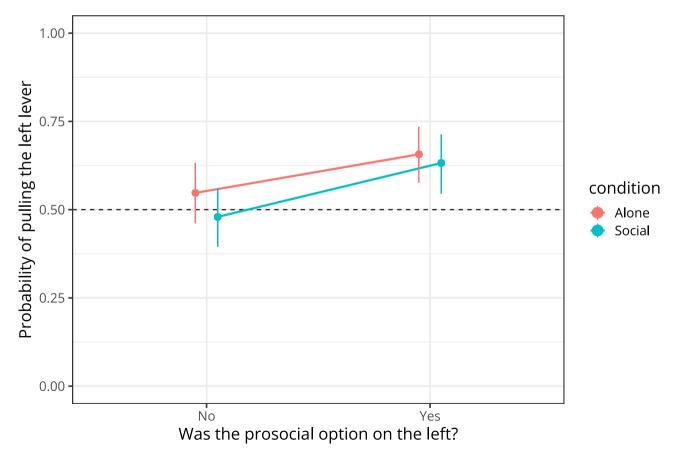
- 1 post <- as_draws_df(x = mod2.2) # posterior samples</pre>
- 2 posterior_plot(samples = exp(post\$b_prosoc_left), compval = 1) + labs(x = "Odds ratio")



Absolute effects

The absolute effect depends on all the parameters of the model and gives us the effective impact of a change of one unit in a predictor (in probability space).

```
1 model_predictions <- fitted(mod2.2) %>% # prediction for p (i.e., the probability)
2 data.frame() %>%
3 bind_cols(df1) %>%
4 mutate(condition = factor(condition), prosoc_left = factor(prosoc_left) )
```



These data represent the number of applications to UC Berkeley by gender and department. Each application was either accepted or rejected and the results are aggregated by department and gender.

	1 (df	2 <- op	en_dat	a(admis	sion))	
	dept	gender	admit	reject	applications	
1	A	Male	512	313	825	
2	A	Female	89	19	108	
3	В	Male	353	207	560	
4	В	Female	17	8	25	
5	С	Male	120	205	325	
6	С	Female	202	391	593	
7	D	Male	138	279	417	
8	D	Female	131	244	375	
9	E	Male	53	138	191	
10	E	Female	94	299	393	
11	F	Male	22	351	373	
12	F	Female	24	317	341	

We want to know whether there is a gender bias in recruitment?

We will build a model of the admissions decision using the gender of the applicant as a predictor.

 $admit_i \sim Binomial(n_i, p_i)$ $logit(p_i) = \alpha + \beta_m \times m_i$ $\alpha \sim Normal(0, 1)$ $\beta_m \sim Normal(0, 1)$

Variables:

- admit_i: The number of successful applications (admit).
- *n_i*: The total number of applications (**applications**).
- m_i : The aplicant's gender (1 = Male).

```
1 priors <- c(prior(normal(0, 1), class = Intercept) )
2
3 mod3 <- brm(
4 formula = admit | trials(applications) ~ 1,
5 family = binomial(link = "logit"),
6 prior = priors,
7 data = df2,
8 sample_prior = "yes"
9 )</pre>
```

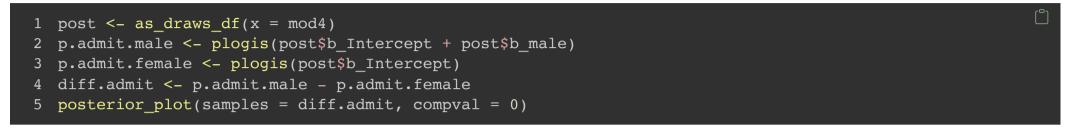
```
1 priors <- c(
     prior(normal(0, 1), class = Intercept),
2
     prior(normal(0, 1), class = b)
 4
 5
6 # dummy-coding
   df2$male <- ifelse(df2$gender == "Male", 1, 0)</pre>
 7
 8
9 mod4 \leq -brm(
     formula = admit | trials(applications) ~ 1 + male,
10
   family = binomial(link = "logit"),
11
12
     prior = priors,
13
     data = df2,
     sample prior = "yes"
14
15
```

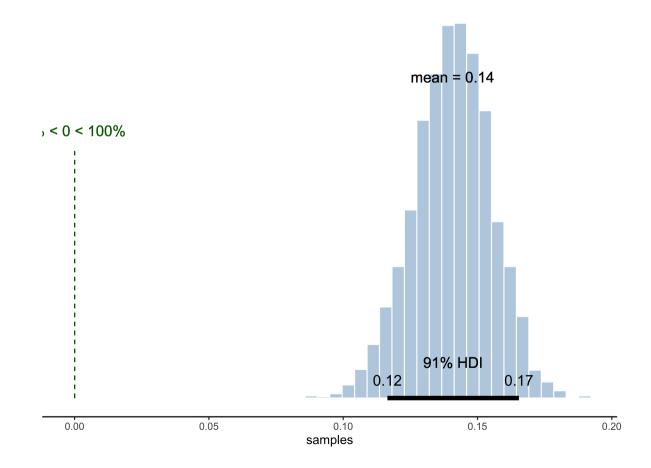
1 summary(mod4)

-	binomial mu = logit											
Formula:	admit trials(applications) ~ 1 + male											
Data:	df2 (Number of observations: 12)											
Draws:	4 chains, each with iter = 2000; warmup = 1000; thin = 1;											
	total post-warmup draws = 4000											
Populati	on-Level Effects:											
	Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS											
Intercep	ot -0.83 0.05 -0.93 -0.72 1.00 2225 1853											
male	0.61 0.06 0.48 0.73 1.00 2628 2185											
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS												
and Tail	_ESS are effective sample size measures, and Rhat is the potential											
scale re	eduction factor on split chains (at convergence, Rhat = 1).											

Being a man seems to be an advantage...! The odds ratio is $exp(0.61) \approx 1.84$.

Let's calculate the difference in probability of admission between men and women.





Visualising the model's predictions

Let's examine the model's predictions by department.



Posterior predictive check

The model's predictions are very poor... There are only two departments for which women have a lower probability of admission than men (C and E), whereas the model predicts a lower probability of admission for all departments...

The problem is twofold:

- Men and women do not apply to the same departments.
- The departments do not all have the same number of students.

This is <u>Simpson's "paradox"</u>... remarks:

- The posterior distribution alone would not have detected this problem.
- We were able to pinpoint the problem by examining the detailed model's predictions...

We therefore build a model of admission decisions by gender, within each department.

 $admit_i \sim Binomial(n_i, p_i)$ $logit(p_i) = \alpha_{dept[i]} + \beta_m \times m_i$ $\alpha_{dept[i]} \sim Normal(0, 1)$ $\beta_m \sim Normal(0, 1)$

```
1 # model without any predictor
2 \mod 5 \le brm(
     admit | trials(applications) ~ 0 + dept,
3
   family = binomial(link = "logit"),
 4
   prior = prior(normal(0, 1), class = b),
     data = df2
 6
 8
9 # model with one predictor (sex)
10 \mod 6 \le brm(
     admit | trials(applications) ~ 0 + dept + male,
11
   family = binomial(link = "logit"),
12
     prior = prior(normal(0, 1), class = b),
13
     data = df2
14
15
     )
```

1 summary(mod6)

<pre>Family: binomial Links: mu = logit Formula: admit trials(applications) ~ 0 + dept + male Data: df2 (Number of observations: 12) Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000</pre>												
Populati	on-Level E	ffects:										
Es	stimate Est	Error l	-95% CI u	-95% CI	Rhat	Bulk_ESS '	Tail_ESS					
deptA	0.68	0.10	0.50	0.87	1.00	1965	2929					
deptB	0.64	0.11	0.42	0.87	1.00	2191	2846					
deptC	-0.58	0.08	-0.73	-0.43	1.00	3009	2535					
deptD	-0.61	0.09	-0.78	-0.44	1.00	2834	2758					
deptE	-1.05	0.10	-1.24	-0.86	1.00	3101	2982					
_	-2.57											
male	-0.11	0.08	-0.27	0.06	1.00	1619	2403					
Draws we	Draws were sampled using sampling(NUTS). For each parameter,											
							is the poten	tial				
	_ eduction fac		—				—					
				(,,,						

[]

1 f	ixef(mod6)				
	Estimate	Est.Error	Q2.5	Q97.5	
deptA	0.6844546	0.09699335	0.4955171	0.87378332	
deptB	0.6416951	0.11488191	0.4201809	0.86578455	
deptC	-0.5769302	0.07513928	-0.7272142	-0.42587992	
deptD	-0.6073597	0.08545915	-0.7823102	-0.44428476	
deptE	-1.0488372	0.09630802	-1.2376921	-0.86091445	
deptF	-2.5741081	0.16103756	-2.8928532	-2.26372318	
male	-0.1053356	0.08111418	-0.2700577	0.05695022	

Now, the prediction for β_m goes the other way... The odds ratio is $\exp(-0.1) = 0.9$, the odds of admission for men are estimated to be 90% of the odds for women.

Posterior predictive check 1.00 Admission probability Α В С D Е 0.25 -F 0.00 female male male male female female male female male male female female

Conclusions

Men and women do not apply to the same departments and the departments vary in their probability of admission. In this case, women applied more to departments E and F (with a lower probability of admission) and applied less to departments A or B, with a higher probability of admission.

To assess the effect of gender on the probability of admission, we therefore need to ask the following question: "What is the difference in probability of admission between men and women **within each department**?" (rather than in general).

Remember that the regression model can be generalised to different data generation models (i.e., different probability distributions, such as Normal, Binomial, Poisson, etc) and that the parameter space can be "connected" to the predictor space (measured variables) using link functions (e.g., logarithm, exponential, logit, etc).

Remember the distinction between **relative effects** (e.g., a change in odds) and **absolute effects** (e.g., a difference in probability).

Ladislas Nalborczyk - IBSM2023

Practical work - Experimental absenteeism

Working with human subjects implies a minimum of mutual cooperation. But this is not always the case. A non-negligible proportion of students who register for Psychology experiments do not turn up on the day they are supposed to... We wanted to estimate the **probability of a registered student's attendance** as a function of whether or not a reminder email was sent (this example is presented in detail in two blog articles, accessible <u>here</u> and <u>here</u>).

		pen_data(abs sample_frac		10)								
_	dav	inscription	romindor	abconco	procondo	+0+21	_	_			_	
	—	—			—							
1	Monday	doodle	no	5	4	9						
2	Tuesday	panel	yes	0	9	9						
3	Monday	doodle	yes	2	6	8						
4	Friday	panel	yes	0	10	10						
5	Tuesday	doodle	yes	1	7	8						
6	Wednesday	doodle	yes	0	4	4						
7	Tuesday	doodle	no	4	10	14						
8	Friday	doodle	yes	0	2	2						
9	Thursday	doodle	no	3	11	14						
10	Friday	doodle	no	7	11	18						

Practical work

- What is the probability that a participant who has registered on his or her own initiative will actually come and take part in the experiment?
- What is the effect of the reminder?
- What is the effect of the registration method?
- What is the joint effect of these two predictors?

108

Practical work

Write the model that predicts the presence of a participant without a predictor.

```
y_i \sim \text{Binomial}(n_i, p_i)\text{logit}(p_i) = \alpha\alpha \sim \text{Normal}(0, 1)
```

Practical work

<pre>1 mod7 <- brm(2 presence trials(total) ~ 1, 3 family = binomial(link = "logit"), 4 prior = prior(normal(0, 1), class = Intercept), 5 data = df3, 6 # using all available parallel cores 7 cores = parallel::detectCores() 8)</pre>	Ê
<pre>1 fixef(mod7) # relative effect (log-odds)</pre>	
Estimate Est.Error Q2.5 Q97.5 Intercept 1.146064 0.1930107 0.7875779 1.53671	
<pre>1 fixef(mod7) %>% plogis # absolute effect (probability of presence)</pre>	
Estimate Est.Error Q2.5 Q97.5 Intercept 0.7587913 0.5481034 0.687311 0.8229859	

- What is the probability that a participant who has registered on his or her own initiative will actually come and take part in the experiment?
- What is the effect of the reminder?
- What is the effect of the registration method?
- What is the joint effect of these two predictors?

111

We start by recoding into dummy variables reminder and inscription.

<pre>1 df3 <- 2 df3 %>% 3 mutate(4 reminder = ifelse(reminder == "no", 0, 1), 5 inscription = ifelse(inscription == "panel", 0, 1) 6) 7 8 head(df3, n = 10)</pre>										
	day i	nscription remi	nder ab	sence pre	sence t	otal				
1	Friday	1	0	7	11	18				
2	Friday	1	1	0	2	2				
3	Friday	0	1	0	10	10				
4	Monday	1	0	5	4	9				
5	Monday	1	1	2	6	8				
6	Monday	0	1	6	12	18				
7 Т	hursday	1	0	3	11	14				
8	Tuesday	1	0	4	10	14				
9	Tuesday	1	1	1	7	8				
10	Tuesday	0	1	0	9	9				

Write the model that predicts presence as a function of recall.

 $y_i \sim \text{Binomial}(n_i, p_i)$ $\text{logit}(p_i) = \alpha + \beta \times \text{reminder}_i$ $\alpha \sim \text{Normal}(0, 1)$ $\beta \sim \text{Normal}(0, 1)$

Write the model that predicts the probability of presence as a function of reminder.

```
1 priors <- c(
     prior(normal(0, 1), class = Intercept),
 2
     prior(normal(0, 1), class = b)
 5
6 mod8 <- brm(
       presence | trials(total) ~ 1 + reminder,
       family = binomial(link = "logit"),
 8
       prior = priors,
 9
       data = df3,
10
11
       cores = parallel::detectCores()
12
```

What is the **relative** effect of the reminder email?

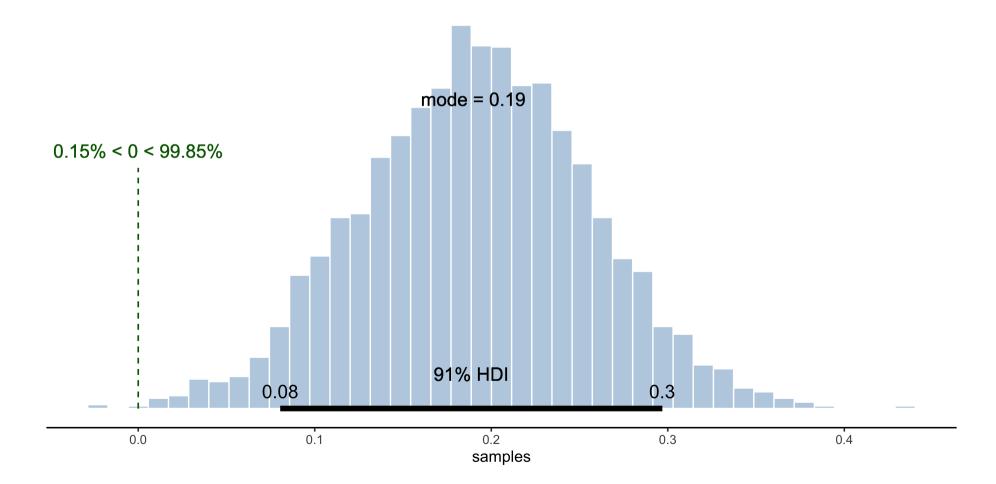
1 exp(fixef(mod8)[2]) # odds ratio with and without the reminder e-mail

[1] 3.021774

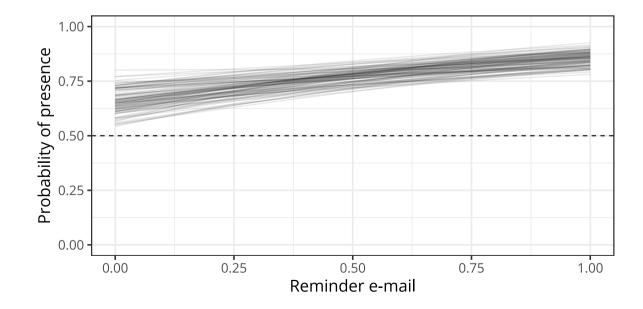
Sending a reminder e-mail increases the odds by about 3.

What is the **absolute** effect of the reminder email?

```
1 post <- as_draws_df(x = mod8) # retrieving posterior samples
2 p.no <- plogis(post$b_Intercept) # probability of presence without reminder e-mail
3 p.yes <- plogis(post$b_Intercept + post$b_reminder) # probability of presence with reminder e-mail
4 posterior_plot(samples = p.yes - p.no, compval = 0, usemode = TRUE)</pre>
```



```
1 library(tidybayes)
2 library(modelr)
 3
   df3 %>%
 4
     group by(total) %>%
 5
     data grid(reminder = seq range(reminder, n = 1e2) ) %>%
 6
     add fitted draws(mod8, newdata = ., n = 100, scale = "linear") %>%
     mutate(estimate = plogis(.value) ) %>%
 8
     group by(reminder, .draw) %>%
9
10
     summarise(estimate = mean(estimate) ) %>%
     ggplot(aes(x = reminder, y = estimate, group = .draw) ) +
11
12
     geom hline(yintercept = 0.5, lty = 2) +
     geom line(aes(y = estimate, group = .draw), size = 0.5, alpha = 0.1) +
13
14
     ylim(0, 1) +
15
     labs(x = "Reminder e-mail", y = "Probability of presence")
```



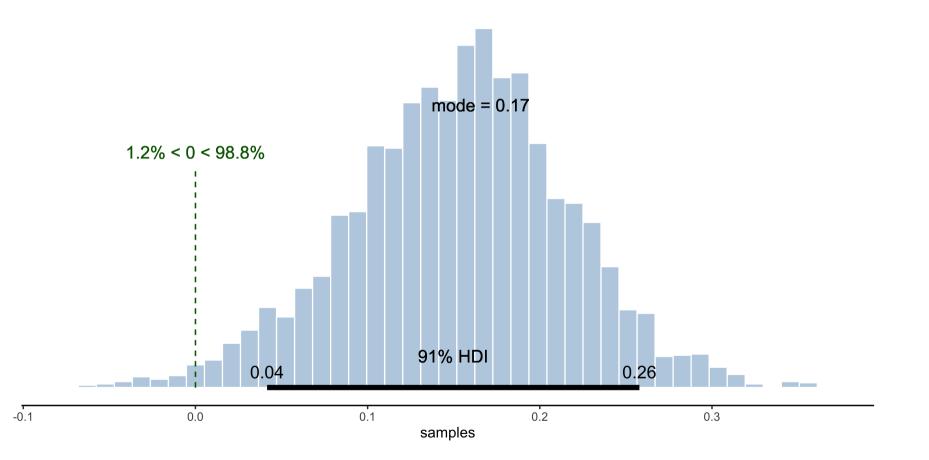
- What is the probability that a participant who has registered on his or her own initiative will actually come and take part in the experiment?
- What is the effect of the reminder?
- What is the effect of the registration method?
- What is the joint effect of these two predictors?

Write the model that predicts the probability of presence as a function of registration mode.

 $y_i \sim \text{Binomial}(n_i, p_i)$ logit(p_i) = $\alpha + \beta \times \text{inscription}_i$ $\alpha \sim \text{Normal}(0, 1)$ $\beta \sim \text{Normal}(0, 1)$

```
1 priors <- c(
2 prior(normal(0, 1), class = Intercept),
3 prior(normal(0, 1), class = b)
4 )
5 
6 mod9 <- brm(
7 presence | trials(total) ~ 1 + inscription,
8 family = binomial(link = "logit"),
9 prior = priors,
10 data = df3,
11 cores = parallel::detectCores()
12 )
```

- 1 post <- as_draws_df(x = mod9)</pre>
- 2 p.panel <- plogis(post\$b_Intercept) # average probability of presence panel</pre>
- 3 p.doodle <- plogis(post\$b_Intercept + post\$b_inscription) # average probability of presence- doodle
- 4 posterior_plot(samples = p.panel p.doodle, compval = 0, usemode = **TRUE**)



The probability of presence is increased by around 0.17 when registering on a panel compared with registering on a Doodle (slightly smaller effect than for the reminder).

- What is the probability that a participant who has registered on his or her own initiative will actually come and take part in the experiment?
- What is the effect of the reminder?
- What is the effect of the registration method?
- What is the joint effect of these two predictors?

122

Write the full model.

 $y_i \sim \text{Binomial}(n_i, p_i)$ $\text{logit}(p_i) = \alpha + \beta_1 \times \text{reminder}_i + \beta_2 \times \text{inscription}_i$ $\alpha \sim \text{Normal}(0, 1)$ $\beta_1, \beta_2 \sim \text{Normal}(0, 1)$

```
1 priors <- c(
2 prior(normal(0, 1), class = Intercept),
3 prior(normal(0, 1), class = b)
4 )
5
6 mod10 <- brm(
7 presence | trials(total) ~ 1 + reminder + inscription,
8 family = binomial(link = "logit"),
9 prior = priors,
10 data = df3,
11 cores = parallel::detectCores()
12 )
```

1 summary(mod10)

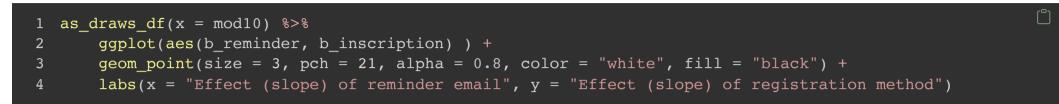
Family: binomial Links: mu = logit										
Formula: presence trials(total) ~ 1 + reminder + inscription										
Data: df3 (Number of observations: 13)										
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;										
total post-warmup draws = 4000										
Population-Level Effects:										
Estimate Est.Error 1-95% C	I u-95% CI Rhat Bulk_ESS Tail_ESS									
Intercept 1.02 0.57 -0.1	1 2.11 1.00 2523 2363									
reminder 0.92 0.48 0.0	2 1.92 1.00 2436 2415									
inscription -0.35 0.54 -1.3	9 0.75 1.00 2577 2306									
-										
Draws were sampled using sampling(NUTS). For each parameter, Bulk ESS										
and Tail ESS are effective sample size measures, and Rhat is the potential										

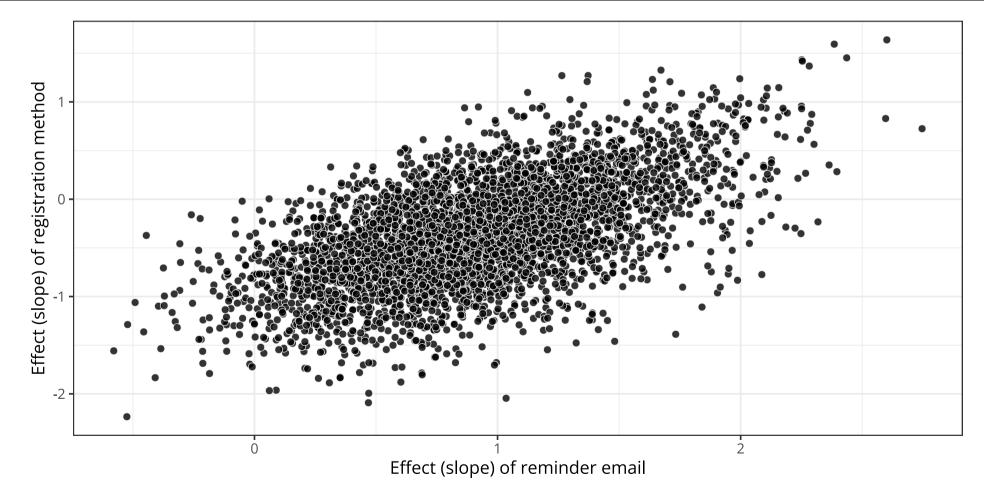
scale reduction factor on split chains (at convergence, Rhat = 1).

The reminder e-mail seems to have less effect in the full model than in the simple model... why is this?

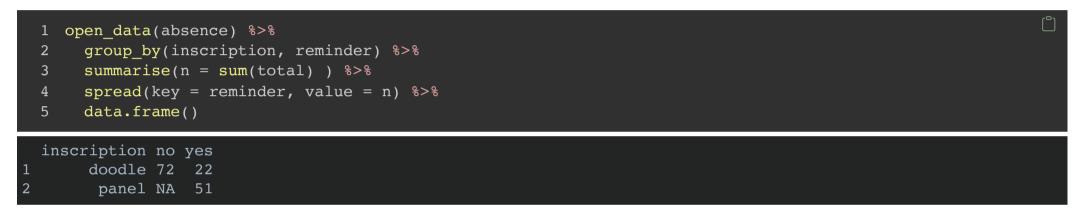
<pre>1 fixef(mod8) %>% exp() # computing the odds ratio</pre>	
Estimate Est.Error Q2.5 Q97.5 Intercept 1.958003 1.274121 1.226752 3.179808 reminder 3.021774 1.468636 1.435682 6.527387	
<pre>1 fixef(mod9) %>% exp() # computing the odds ratio</pre>	
Estimate Est.Error Q2.5 Q97.5 Intercept 6.3070616 1.479543 3.1012980 14.3532331 inscription 0.3807339 1.547852 0.1583898 0.8753162	
<pre>1 fixef(mod10) %>% exp() # computing the odds ratio</pre>	
Estimate Est.ErrorQ2.5Q97.5Intercept2.77246781.7715340.89957978.209809reminder2.50582591.6160341.01996026.851798inscription0.70165011.7127750.25004802.115074	

When two predictors share some of the same information, the slope estimates are correlated...





Indeed, the data were collected by two experimenters. One of them recruited all her participants via Doodle, and did not often send a reminder email. The second experimenter recruited all her participants via a physical sign in the laboratory and systematically sent a reminder email. In other words, these two variables are almost perfectly identical.



References

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of State Calculations by Fast Computing Machines. *The Journal of Chemical Physics*, *21*(6), 1087–1092. <u>https://doi.org/10.1063/1.1699114</u>

Ladislas Nalborczyk - IBSM2023

