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Multilevel models

The aim is to build a model that can learn at several levels, a model that can produce estimates that will

be informed by the different groups present in the data. We will follow the following example
throughout this course.

Let's assume that we've built a robot that visits cafés and measures the waiting time after ordering a
coffee. This robot visits 20 different cafés, 5 times in the morning and 5 times in the afternoon, and
measures the time (in minutes) it takes to get a coffee.
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Coffee robot

library(tidyverse)
library(imsb)

df <- open data(robot)
head(x = df, n = 15)

cafe afternoon wait

1 .9989926
.2133944
.1866730
.5624399
.9956779
.8957176
.7804582
.3844837
.8617982
.5800004
.7421223
.3525907
.5215095
.9628102
.9543977

1
2
3
4
5
6
7
8

NN NNMNNRR RRRR R R BP
ORPOFrRPRORrROHORLORORHRO
HONREFNNDWNWNWWE NS

Ladislas Nalborczyk - IBSM2023



Coffee robot

1
2 ggplot(aes(x = factor(cafe), y = wait, fill = factor(afternoon) ) )
3 geom_dotplot (
4 stackdir = "center", binaxis =
5 dotsize = 1, show.legend = FALSE
6 ) +
7 geom hline(yintercept = mean(df$wait), linetype = 3) +
8 facet wrap(~afternoon, ncol = 2) +
9 labs(x = "Café", y = "Waiting time (min)")
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Coffee robot, a first model

An initial model can be built, estimating the average time (across all cafés combined) to be served.

w; ~ Normal(y;, o)
Hi =
a ~ Normal(5, 10)
o ~ HaltCauchy(0, 2)
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Half-Cauchy

px | xo0,7) = <7W

ggplot(data = data.frame(x = c(0, 10) ), aes(x = x)
stat function(

args = list(location = 0, scale = 2), size = 1.5

1
2
3 fun = dcauchy,
4
> )
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Coffee robot, a first model

library(brms)

modl <- brm(

formula = wait ~ 1,

prior = c(
prior (normal(5, 10), class = Intercept),
prior(cauchy(0, 2), class = sigma)
)I

data = df,

cores = parallel::detectCores|()

)

1 posterior summary(x = modl, probs = c(0.025, 0.975), pars = c(""b_", "sigma") )

Estimate Est.Error 02.5 097.5
b Intercept 3.118251 0.08020407 2.956309 3.268246
sigma 1.143048 0.05675120 1.035605 1.259202
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One intercept per café

Second model which estimates one intercept per café. Equivalent to constructing 20 dummy variables.

w; ~ Normal(y;, o)
Hi = Qcafé[i]
Qcafe[i] ~ Normal(5, 10)
o ~ HalfCauchy(0, 2)

1 mod2 <- brm(

formula = wait ~ 0 + factor(cafe),

prior = c(
prior (normal(5, 10), class = b),
prior(cauchy(0, 2), class = sigma)
) s

data = df,

cores = parallel::detectCores()

)

2
3
4
5
6
7
8
)
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One intercept per café

1 posterior summary(x

b factorcafel
b factorcafe?
b factorcafe3
b factorcafe4d
b factorcafe5
b factorcafeé6
b factorcafe7?
b factorcafe8
b factorcafe9
b factorcafelO
b factorcafell
b factorcafel?
b factorcafel3
b factorcafel4
b factorcafel5
b factorcafelé6
b factorcafel7?
b factorcafel8
b factorcafel9
b factorcafe20

Estimate
.451085
.724707
.321328
.795010
.461022
.637604
.943423
.167672
.334906
.096252
.919792
.487732
.219461
.630692
.476996
.005773
.879522
.527586
.972815
.364395
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mod2, pars = ""b ")

Est.Error
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.2610853
.2618685
.2591069
.2491789
.2614662
.2580897
.2566098
.2568818
.2577492
.2613306
.2688887
.2518169
.2626960
.2653149
.2600783
.2583324
.2627024
.2586780
.2567997
.2704167
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02.5

.9512768
.2119623
.8128314
.3113631
.9426324
.1300960
.4467521
.6596383
.8215052
.5830027
.4079115
.9864178
.7083647
.0847316
.9567007
.5112834
.3518362
.0194691
.4740427
.8278114
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.974664
.232001
.818617
.271451
.981485
.135650
.447219
.673230
.834208
.594380
.432918
.968451
.729026
.159034
.996322
.514806
.399417
.029890
.487078
.897341
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Multilevel model

Couldn’t we ensure that the time measured at café 1 informs the measurement taken at café 2 and café
3?7 As well as the average time taken to be served? We're going to learn the priors from the data...

Level 1 : w; ~ Normal(y;, o)
Hi = Ccafd[i]
Level 2 : acaig ~ Normal(a, ocafz )
a ~ Normal(3, 10)
o.ae ~ HalfCauchy(0, 2)
o ~ HalfCauchy(0, 2)

The prior for the intercept of each coffee (aq4) is Now a function of two parameters (@ and o, ). @ and
O..fs are called hyper-parameters, they are parameters for parameters, and their priors are called
hyperpriors. There are two levels in the model...
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Equivalences

w; ~ Normal(y;, o)
Hi = Ocafé[i]
Acafe ~ Normal(a, ocafs)

NB: a is defined here in the prior for acaie but it could also be defined in the linear model:

w; ~ Normal(u;, o)
Hi = &+ Acafg[i]
Acafe ™~ Normal(O, O'café)

We can always “remove” the mean from a Gaussian distribution and consider it as a constant plus a
Gaussian centred on zero.

NB: when a is defined in the linear model, the a., represent deviations from the mean intercept. It is
therefore necessary to add a and a, to obtain the average waiting time per café..
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Equivalences

vyl <- rnorm(n le4, mean = 1)
y2 <- rnorm(n le4, mean 1) + 5

data.frame(yl = yl,
pivot longer(cols = 1:2, names to = "x", values to
ggplot(aes(x = y, colour = x) ) +
geom density(show.legend = FALSE)
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Multilevel model

mod3 <- brm(
formula = wait ~ 1 + (1 | cafe),
prior = c(
prior (normal(5, 10), class = Intercept),
prior(cauchy(0, 2), class = sigma),

prior(cauchy (0, 2), class = sd)
) s

data = df,

warmup = 1000, iter = 5000,

cores = parallel::detectCores()

This model has 23 parameters, the general intercept a, the residual variability o, the variability between
cafés and one intercept per café.
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Shrinkage
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Shrinkage magic (Efron & Morris, 1977)

Stein’s Paradox in Statistics

The best guess about the future is usually obtained by computing

the average of past events. Stein’s paradox defines circumstances

1n which there are estimators better than the arithmetic average

by Bradley Efron and Carl Morris

The James-Stein estimator is defined asz = y + ¢(y — y), where y is the sample mean, y is an individual
observation, and c is a constant, the shrinking factor (Efron & Morris, 1977).
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Shrinkage magic (Efron & Morris, 1977)

The shrinking factor is determined both by the variability (imprecision) of the measurement (e.g., its
standard deviation) and by the distance to the mean estimate (i.e., y — y). In other words, this estimator is
less “confident” about (i.e., gives less weight to) imprecise and/or extreme observations. In practice,

shrinkage acts as a safeguard against overlearning (overfitting).
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Pooling

The shrinkage observed on the previous slide is due to information pooling between cafés. The estimate
of the intercept for each café informs the intercept estimates of the other cafés, as well as the estimate of
the general intercept (i.e, the overall average waiting time).

There are generally three perspectives (or strategies):
e« Complete pooling: the waiting time is assumed to be invariant, a common intercept (mod1l) is
estimated.

e No pooling: it is assumed that each café’s waiting time is unigue and independent: an intercept is
estimated for each café, but without informing the higher level (mod?2).

e Partial pooling: an adaptive prior is used, as in the previous example (mod3).

The complete pooling strategy generally underfits the data (low predictive capacity) whereas the no
pooling strategy amounts to overfitting the data (low predictive capacity here too). The partial pooling
strateqgy (i.e., that of multilevel models) balances underfitting and overfitting.
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Model comparison

We can compare these models using indices derived from information theory (extensions of AIC), such as
the WAIC (the lower the better).

modl <- add criterion(modl, "waic")
mod2 <- add criterion(mod2, "waic")
mod3 <- add criterion(mod3, "waic")

w <- loo compare(modl, mod2, mod3, criterion = "waic")
print(w, simplify = FALSE)

1
2
3
4
5
6
7
8

elpd diff se diff elpd waic se elpd waic p waic se p waic waic se waic
mod3 0.0 0.0 -253.8 8.3 18.2 1.5 507.6 16.6
mod2 -0.7 1.3 -254.5 8.4 19.6 1.6 509.1 16.8
modl -57.3 10.6 -311.1 10.5 2.0 0.3 622.2 21.1

We note that model 3 has only 18 effective parameters (pWAIC) and fewer parameters than model 2,
whereas it actually has 2 more... posterior_summary(mod3)[3, 1] gives usthe sigma of the adaptive
prior on deaz (Ocate = 0.82). Note that this sigma is very low and corresponds to assigning a very
restrictive or regularising prior.
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Model comparaison
We compare the estimates from the first (complete pooling) and third (partial pooling) model.

1 posterior summary(modl, pars = c(""b", "sigma") )

Estimate Est.Error 02.5 097.5
b Intercept 3.118251 0.08020407 2.956309 3.268246
sigma 1.143048 0.05675120 1.035605 1.259202

1 posterior summary(mod3, pars = c(""b", "sigma") )

Estimate Est.Error 02.5 097.5
b Intercept 3.1226606 0.2075211 2.7209592 3.5347898
sigma 0.8221927 0.0440647 0.7409711 0.9137384

Both models make the same prediction (on average) for a, but model 3 is more uncertain of its
prediction than model 1 (see the standard error for a)...

The o estimate of model 3 is smaller than that of model 1 because model 3 decomposes the unexplained
variability into two sources: variability in waiting time between cafés and the residual variability o.
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Coffee robot

Let's assume that our robot doesn't visit all the cafés the same number of times (as in the previous case)
but that it visits more often the cafés close to home...

df2 <- open data(robot unequal)

mod4 <- brm(

formula = wait ~ 1 + (1 | cafe),

prior = c(
prior(normal(5, 10), class = Intercept),
prior(cauchy(0, 2), class = sigma),
prior (cauchy(0, 2), class sd)
),

data = df2,

warmup = 1000, iter = 5000,

cores = parallel::detectCores()

)

1
2
3
4
5
6
7
8
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Shrinkage

We can see that cafés that are visited frequently (right) are less affected by the effect of shrinkage. Their
estimates are less “pulled” towards the average than the estimates of the least frequently visited cafés

(left).
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Aparté: fixed and random effects

Five (contradictory) definitions identified by Gelman (2005).

e Fixed effects are constant across individuals, and random effects vary.

o Effects are fixed if they are interesting in themselves or random if there is interest in the underlying
population.

« When a sample exhausts the population, the corresponding variable is fixed; when the sample is a
small (i.e., negligible) part of the population the corresponding variable is random.

e |fan effect is assumed to be a realized value of a random variable, it is called a random effect.

» Fixed effects are estimated using least squares (or, more generally, maximum likelihood) and random
effects are estimated with shrinkage.

Gelman & Hill (2006) suggest instead the use of the terms constant effcts and varying effects, and to
always use multilevel modelling, considering that the so-called fixed effect can simply be considered as
a random effect whose variance would be equal to 0 (see also Nalborczyk et al., 2019).

Ladislas Nalborczyk - IBSM2023
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Regularisation and terminology

Varying the intercepts for each café is simply another way of (adaptively) regularising, that is, reducing
the weight given to the data in the estimation. The model becomes able to estimate the extent to which
the groups (in this case the cafés) are different, while estimating the characteristics of each café...

Difference between cross-classified (or “crossed”) multilevel models and nested or hierarchical
multilevel models. Cross-classified models refer to data structured according to two (or more) non-
nested random factors. Hierarchical models usually refers to hierarchically structured data (e.g., a student
in a class in a school in a city...). See this discussion for more details.

However, the two types of models are written in a similar way, on several “levels”. The term “multilevel” (in

our terminology) therefore refers to the structure of the model, to its specification. It is distinct from the
structure of the data.

Ladislas Nalborczyk - IBSM2023
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Coffee robot: varying intercept + varying slope

We are now interested in the effect of the time of day on the waiting time. Do we wait more in the
morning, or in the afternoon?

w; ~ Normal(y;, o)
Ui = Qeatéli] + Peate[i] X Ai

Where A; is a dummy variable coded 0/1 for morning/afternoon and where fi., is therefore a difference
parameter (i.e. a slope) between morning and afternoon.

Note: we know that cafés have intercepts and slopes that co-vary... Popular cafés will be overcrowded in
the morning and much less in the afternoon, resulting in a negative slope. These cafés will also have a
longer average waiting time (i.e,, a larger intercept). In these cafés, a is large and f is far from zero.
Conversely, in an unpopular café, the waiting time will be short, as well as the difference between the
morning and afternoon’s waiting time.

We could therefore use the co-variation between the intercept and slope to make better inferences. In
other words, ensure that the estimate of the intercept informs the estimate of the slope, and reciprocally.
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Coffee robot: varying intercept + varying slope

We are now interested in the effect of the time of day on the waiting time. Do we wait more in the

morning, or in the afternoon?

w; ~ Normal(y;, o)
Ui = Ocafefi] + Peate[i] X Ai

[acafé ] ~ MVNormal< [a] ; S>
,Bcafé IB

The third line posits that every café has an intercept acae and a slope feate, defined by a bivariate (i.e,
two-dimensional) Gaussian prior having as means a and f and as covariance matrix S.

Ladislas Nalborczyk - IBSM2023
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Aparté: multivariate Normal distribution

x ~ N, X)

Where p is a (k-dimensional) vector of means, for instance:mu <- c(a, b).

2 is a covariance matrix of k X k dimensions, and which corresponds to the matrix given by the function

oo CaOpp
2= )
CaOpp o}

vcov().

Ladislas Nalborczyk - IBSM2023
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Aparté: multivariate Normal distribution

cx=0y, p=0 2oy=0y, p=0

Ladislas Nalborczyk - IBSM2023
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Aparté: multivariate Normal distribution

2
04 CaOBp

CaOppP aﬂz

This matrix can be constructed in two different ways, strictly equivalent.

sigma_a <- 1

sigma_b <- 0.75

rho <- 0.7

cov_ab <- sigma_a * sigma_b * rho

(Sigmal <- matrix(c(sigma a”2, cov_ab, cov_ab, sigma b"2), ncol

[,1] [,2]
[1,] 1.000 0.5250
[2,] 0.525 0.5625

Ladislas Nalborczyk - IBSM2023
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Aparté: multivariate Normal distribution

o CaOppP
2= 5
CaOppP o}

The second method is convenient because it considers separately the standard deviations and
correlations.

1 (sigmas <- c(sigma_a, sigma b) )

[1] 1.00 0.75

(Rho <- matrix(c(l, rho, rho, 1), nrow =

(Sigma2 <- diag(sigmas) %*% Rho %*% diag(sigmas) )

[,1] [,2]
[1,] 1.000 0.5250
[2,] 0.525 0.5625

Ladislas Nalborczyk - IBSM2023
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Coffee robot: varying intercept + varying slope

w; ~ Normal(y;, o)
Ui = Ocafefi] + Peate[i] X Ai

[acafé ] ~ MVNormal< [a] , S>
ﬂcafé ﬁ
o, O o, O
s=(% o) ®(% 4)
O O'ﬁ O Gﬂ

a ~ Normal(0, 10)
S ~ Normal(0, 10)
o, ~ HalfCauchy(0, 2)
op ~ HalfCauchy(0, 2)
o ~ HalfCauchy(O0, 2)

R ~ LKI(2)

S is defined by factoring o, op, and the correlation matrix R. The next lines of the model simply define
priors for constant effects. The last line specifies the prior for R.
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LKJ prior

Prior proposed by Lewandowski et al. (2009). A single parameter { (zeta) specifies the concentration of
the distribution of the correlation coefficient. The LKJ(2) prior defines an weakly informative prior for p
(rho) which is sceptical of extreme correlations (i.e., values close to —1 or 1).

Probability density (per prior)
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Syntax reminders
The brms package uses the same syntax as R base functions (like 1m) or the 1me4 package.
1 Reaction ~ Days + (1 + Days | Subject)

The left-hand side defines the dependent variable (or "outcome’, i.e., what we are trying to predict).

The right-hand side defines the predictors. The intercept is usually implied, so the two formulations

below are equivalent.

1 Reaction ~ Days + (1 + Days | Subject)

2 Reaction ~ 1 + Days + (1 + Days | Subject)

Ladislas Nalborczyk - IBSM2023
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Syntax reminders

The first part of the right-hand side of the formula represents the constant effects (fixed effects), whereas
the second part (between parentheses) represents varying effects (random effects).

1 Reaction ~ 1 + Days + (1 | Subject)
2 Reaction ~ 1 + Days + (1 + Days | Subject)

The first model above contains only a varying intercept, which varies by Subject. The second model
contains a varying intercept, but also a varying slope for the effect of Days.

Ladislas Nalborczyk - IBSM2023
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Syntax reminders

When including several varying effects (e.g., an intercept and a slope), brms assumes that we also want to
estimate the correlation between these effects. Otherwise, we can remove this correlation (i.e., set it to O)

using | 1.
1 Reaction ~ Days + (1 + Days || Subject)

Previous models assumed a Gaussian generative model. This assumption can be changed easily by
specifying the desired function via the family argument.

1 brm(formula = Reaction ~ 1 + Days + (1 + Days | Subject), family = lognormal() )

Ladislas Nalborczyk - IBSM2023
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Implementation of our model via brms

We specify an intercept and a slope (for the afternoon effect) which vary by cafe.

mod5 <- brm(

formula = wait ~ 1 + afternoon + (1 + afternoon | cafe),

prior = c(
prior (normal
prior (normal
prior (cauchy
prior (cauchy
) s

data = df,

warmup = 1000, iter = 5000,

cores = parallel::detectCores|()

)

10), class = Intercept),
10), class b),

2), class = sigma),

2), class = sd)

(0,
(OI
(0,
(OI
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Posterior distribution

14

data.frame(prior = R[, 1, 2], posterior = post$cor cafe Intercept afternoon) %>%

ggplot(aes(x = value, color = type, fill = type) ) +

tity", alpha = 0.2) +

- _ type

— posterior

- [] prior

1 post <- as draws_df(x = mod5)
2 R <- rethinking::rlkjcorr(n = 16000
3
4
5 gather (type, value, prior:posterior) %>%
6
7 geom histogram(position = "iden
8 labs(x = expression(rho), y = "Number of samples")
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Two-dimensional shrinkage

40
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Model comparaison

We compare the first model (complete pooling model), the third model (partial pooling model), and the
last model (with varying intercept and slope).

1 mod5 <- add criterion(mod5, "waic")
2 w <- loo compare(modl, mod2, mod3, mod5, criterion = "waic")
3 print(w, simplify = FALSE)

elpd diff se diff elpd waic se_elpd waic p waic se p waic waic
0.0 0.0 -155.1 10.0 26.5 2.6 310.
-98. -253 8.3 18. 507.

7 - .8 2 -
-99.5 - -254.5 8.4 19.6 - 509.
0 ol (0

-156. -311 10.5 2 c 622.

1 model weights(modl, mod2, mod3, mod5, weights = "waic")

modl mod3 mod5
1.763502e-68 6.397539e-44 1.337590e-43 1.000000e+00

Ladislas Nalborczyk - IBSM2023
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Model comparaison

The estimate of the average waiting time is more uncertain when we takes into account new sources of
error. However, the overall error of the model (i.e., what is not explained), the residual variation o,
decreases...

1 posterior summary(modl, pars = c(""b", "sigma") )

Estimate Est.Error 02.5 097.5
b Intercept 3.118251 0.08020407 2.956309 3.268246
sigma 1.143048 0.05675120 1.035605 1.259202

1 posterior summary(mod3, pars = c(""b", "sigma") )
Estimate Est.Error 02.5 097.5

b Intercept 3.1226606 0.2075211 2.7209592 3.5347898
sigma 0.8221927 0.0440647 0.7409711 0.9137384

1 posterior summary(mod5, pars = c(""b", "sigma") )

Estimate Est.Error 02.5 Q097.5
b Intercept 3.740964 0.21779934 3.3144648 4.1799312
b afternoon -1.232429 0.08622682 -1.4041576 -1.0647728
sigma 0.489634 0.02755458 0.4379875 0.5474008
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Conclusions

Multilevel models (or “mixed-effects models”) are natural extensions of classical (single-level) regression
models, where classical parameters are themselves assigned “models”, governed by hyper-parameters.

This extension makes it possible to make more precise predictions by taking into account the variability
related to groups or structures (clusters) present in the data. In other words, by modelling the
populations from which the varying effects are drawn (e.g., the population of participants or stimuli).

A single-level regression model is equivalent to a multilevel model where the variability of varying effects
would be fixed at 0.

The Bayesian framework allows a natural interpretation of distributions from which the varying effects
come. Indeed, these distributions can be interpreted as prior distributions, whose parameters are

estimated from the data.
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Practical work - sleepstudy

1 library(lme4)
2 data(sleepstudy)
3 head(sleepstudy, 20)

Reaction Days Subject
249.5600 0 308
258.7047 308
250.8006 308
321.4398 308
356.8519 308
414.6901 308
382.2038 308
290.1486 308
430.5853 308
466.3535 308
222.7339 309
205.2658 309
202.9778 309
204.7070 309
207.7161 309
215.9618 309
213.6303 309
217.7272 309
224.2957 309
237.3142 309

O o0 U1 WD -

O OO UL WDNEFEF O VWSO U & WD -
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Practical work - sleepstudy

1 sleepstudy %>%
ggplot(aes(x = Days, y = Reaction) ) +
geom_smooth(method =

Im", colour = "black") +
geom point() +

facet wrap(~Subject, nrow = 2) +

scale x continuous (breaks c(0, 2, 4, 6, 8) )
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Practical work - sleepstudy

It's up to you to build the mathematical models and brms models corresponding to the following
models:

« A model with only the fixed effect of Days.
« A model with the fixed effect of Days + a random effect of Subject (varying intercept).

« A model with the fixed effect of Days + a random effect of Subject (varying intercept + varying slope
for Days).

Then, compare these models using model comparison tools and conclude.

Ladislas Nalborczyk - IBSM2023
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Proposed solution

fmod0 <- lm(Reaction ~ Days, sleepstudy)
fmodl <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
fmod2 <- lmer (Reaction ~ Days + (1 + Days | Subject), sleepstudy)

anova(fmodl, fmod2)

Data: sleepstudy
Models:
fmodl: Reaction ~ Days + (1 | Subject)
fmod2: Reaction ~ Days + (1 + Days | Subject)
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
fmod1l 4 1802.1 1814.8 -897.04 1794.1
fmod?2 6 1763.9 1783.1 -875.97 1751.9 42.139 2 7.072e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Ladislas Nalborczyk - IBSM2023
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Proposed solution

mod6 <- brm(
Reaction ~ 1 + Days,
prior = c(

prior (normal (200, 100), class
= b),
sigma)

prior (normal(0, 10), class
prior (cauchy(0, 10), class =
) s

data = sleepstudy,

warmup = 1000, iter = 5000,

cores = parallel::detectCores()

1 posterior summary(modé6)

Estimate Est.Error

b Intercept 251.88070 6.536260 239.

b Days 10.32575 .222436 7
sigma 47.81060 .545711 43

= Intercept),

02.5
019687 264.

.927364 12.
187711 53.
lprior -15.69428 .164818 -16.
1p -963.46880 .225855 -966.

046503 -15.
580751
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Proposed solution

mod7 <- brm(

Reaction ~ 1 + Days + (1 | Subject),

prior = c(
prior (normal (200, 100), class = Intercept),
prior (normal(0, 10), class = b),
prior(cauchy(0, 10), class = sigma),
prior(cauchy (0, 10), class sd)
)I

data = sleepstudy,

warmup = 1000, iter = 5000,

cores = parallel::detectCores()

)

1 posterior summary(mod7, pars = c(""b", "sigma") )

Estimate Est.Error 02.5 097.5
b Intercept 250.74661 10.0623899 230.812846 270.52849
b Days 10.39303 0.8097478 8.790013 11.98756
sigma 31.07933 1.7373042 27.919034 34.68583
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Proposed solution

mod8 <- brm(

Reaction ~ 1 + Days + (1 + Days | Subject),

prior = c(
prior (normal (200, 100), class = Intercept),
prior (normal(0, 10), class = b),
prior(cauchy(0, 10), class = sigma),
prior(cauchy (0, 10), class sd)
)I

data = sleepstudy,

warmup = 1000, iter = 5000,

cores = parallel::detectCores()

)

1 posterior summary(mod8, pars = c(""b", "sigma") )

Estimate Est.Error 02.5 Q097.5
b Intercept 251.11727 7.042817 237.316651 265.01693
b Days 10.06105 1.682028 6.654157 13.31108
sigma 25.85012 1.554566 22.983570 29.11508
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Proposed solution

mod6 <- add criterion(modé6, "waic")
mod7 <- add criterion(mod7, "waic")
mod8 <- add criterion(mod8, "waic")

w <- loo compare(mod6, mod7, mod8, criterion = "waic")
print(w, simplify = FALSE)

00 o Ul WN K

elpd diff se diff elpd waic se elpd waic p waic se p waic
mod8 0.0 0.0 -860.0 22.2 32.5 8.1
mod7 -24.7 11.5 -884.7 14.4 18 .2 3.3
mod6 -93.3 20.8 -=953.3 10.6 3.2 0.5

1
2 model weights(mod6, mod7, mod8, weights = "waic")

mod6 mod?7 mod8
3.025212e-41 1.838528e-11 1.000000e+00

waic

1720.0
1769.4
1906.6
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Scientific and cognitive modelling




What is a model good for?

1

One of the most basic problem in scientific inference is the so-called inverse problem: How to
figure out causes from observations. It is a problem, because many different causes can
produce the same evidence. So while it can be easy to go forward from a known cause to
predicted observations, it can very hard to go backwards from observation to cause
(McElreath, 2020).

So far, we have only considered statistical models. These models are useful devices to describe
associations, but they tell us nothing about how these associations arise. In the last part of the course, we
will focus on process models, aiming at describing the mechanisms generating the data (generative
models).

Ladislas Nalborczyk - IBSM2023
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Two-alternative forced choice

Two-alternative forced choice (2AFC) is a method for measuring the sensitivity of a person or animal to
some particular sensory input, stimulus, through that observer’s pattern of choices and response times
to two versions of the sensory input. At each trial, the participant is forced to choose between two
alternatives. For instance, in the random dot motion coherence task (below), the participant must make
a choice response between two directions of motion (e.g., up or down or left or right), usually indicated
by a motor response such as a saccade or pressing a button.
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Reaction times

Reaction times (RTs) distributions are generally positively skewed, with the skewness increasing with task
difficulty. We also know that the mean of the RTs is proportional to the standard deviation of the RTs.
Increases in the difficulty usually lead to increased RTs and decreased accuracy. Moreover, changes in
difficulty also produces regular changes in the distribution of RTs, most notably in its spread but not
much in its shape (for a review, see Forstmann et al., 2016). Moreover, we often find a speed-accuracy

trade-off in these tasks.

The use of simple statistical model (e.g., only analysing differences in group-level average RTs across
conditions) is severely limited in such tasks. Therefore, several models have been proposed to account for
the peculiarities of the data coming from these tasks as well as to relate it to the underlying cognitive

processes.
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Assumptions
There are typically three assumptions made by evidence accumulation models:

e Evidence favouring each alternative is integrated over time
e The process is subject to random fluctuations

e The decision is made when sufficient evidence has accumulated favouring one alternative

Sequential sampling models

/\

Relative evidence criteria: Absolute evidence criteria:
Random walk/diffusion models Accumulator models
Continuous time Discrete time Discrete time Discrete time Continuous Continuous time,
continuous continuous discrete continuous time, discrete continuous evidence:
evidence: evidence: evidence: evidence: evidence: non-stochastic
Diffusion Random Recruitment Accumulator Poisson Linear ballistic
models walk models model model counter Model accumulator model
Hybrid accumulator/diffusion models
absolute evidence criteria.
Decay in drift Constant drift
Ornstein Uhlenbeck (Standard) Wiener
(OU) model Diffusion model Independent evidence totals Inhibition between evidence totals,
with or without decay in drift decay in drift: Leaky competing
Dual diffusion model accumulator (LCA) model

Ladislas Nalborczyk - IBSM2023
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Drift-diffusion model

The drift-diffusion model (DDM) is a continuous-time evidence accumulation model for binary choice
tasks (Ratcliff, 1978). It assumes that in each trial evidence is accumulated in a noisy (diffusion) process by
a single accumulator. As shown below, evidence accumulation starts at some point (the starting point or
“bias”) and continues until the accumulator hits one of the two decision bounds in which case the
corresponding response is given. The total response time is the sum of the decision time from the
accumulation process plus non-decisional components (Vandekerckhove et al., 2010; Wabersich &
Vandekerckhove, 2014; Wagenmakers, 2009). This kind of model provides a decomposition of RT data
that isolates components (of processing) from stimulus encoding to decision so that they can be studied
individually (Ratcliff & McKoon, 2008; Wagenmakers et al., 2007).

7
: Drift rate [v} e - T Upper boundary
- A 1
I Non- ‘.r " . :
o | decision ,-"1 =,
@ 1 time (1)
5 |..'r1e.[...r "-'r"' "J‘L %:
g1 "\ 2!
311 §|
g 11 =1
| : [l
| 1 Biasiz] :
II i. + Lower boundary

Reaction times
(wrong responses)

Time
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Drift-diffusion model

In sum, the original DDM allows decomposing responses to a binary choice tasks and corresponding

response times into four latent processes (from Singmann, 2017)!]

e The drift rate o (delta) is the average slope of the accumulation process towards the boundaries (i.e,, it
represents the average amount of evidence accumulated per unit time). The larger the (absolute value
of the) drift rate, the stronger the evidence for the corresponding response option (thus quantifying
the “ease of processing”).

e The boundary separation a (alpha) is the distance between the two decision bounds and can be
interpreted as a measure of response caution, with a high a corresponding to high caution.

e The starting point (or bias) f (beta) of the accumulation process is a measure of response bias towards
one of the two response boundaries.

e The non-decision time 7 (tau) captures all non-decisional processes such as stimulus encoding and
(motor) response processes.
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Application example: lexical decision task

The lexical decision task is a procedure used in many psychology and psycholinguistics experiments. The
basic procedure involves measuring how quickly and accurately people classify stimuli as words or
nonwords.

Lexical-Decision Task

DOWT

\ /

N s

Is the word shc.>w-n on screen a When Non-word
real word oris it made up?
m
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Application example: lexical decision task

We will adapt the example from Singmann (2017) and analyse part of the data from Experiment 1 of
Wagenmakers et al. (2008). The data comes from 17 participants performing a lexical decision task.
Participants made decisions under speed or accuracy emphasis instructions in different experimental
blocks. After removing some extreme RTs, we restrict the analysis to high-frequency words (frequency =
high) and the corresponding high-frequency non-words (frequency = nw_high) to reduce estimation
time. To setup the model, we also need a numeric response variable in which O corresponds to responses
at the lower response boundary and 1 corresponds to responses at the upper boundary.

data(speed acc, package = "rtdists")

df <- speed acc %>%

filter(censor == FALSE) %>%

1
2
3
4
5
6
7
8

filter(id != 2) %>%
filter(frequency %in% c("high", "nw high") %>%
mutate(response2 = as.numeric(response == "word") %>%

filter(as.numeric(block) < 9) %>%
mutate(id = factor(id), block = factor(block) )

Ladislas Nalborczyk - IBSM2023 “
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Drift-diffusion model in brms

An important decision that has to be made before setting up a model is which parameters are allowed to
differ between which conditions. One common constraint of the DDM is that parameters that are set
before the evidence accumulation process starts (i.e., boundary separation, starting point, and non-
decision time) cannot change based on stimulus characteristics that are not known to the participant
before the start of the trial. Thus, the stimulus category, in the present case word versus non-word, is
usually only allowed to affect the drift rate. We follow this constraint. Furthermore, all relevant variables
are manipulated within-subject. Thus, the maximal varying-effects structure (Barr et al., 2013) can (and
should) be implemented.

formula <- brmsformula(
rt | dec(response2) ~ 1 + condition * stim cat + (1 + condition * stim cat | id),
bs ~ 1 + condition + (1 + condition | id),
ndt ~ 1 + condition + (1 + condition | id),

bias ~ 1 + condition + (1 + condition | id)

)

1
2
3
4
5
6
7
8
)
0
1

1
1
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Drift-diffusion model in brms

00 o Ul WN K

contrasts(df$condition) <- c(+0.5, -0.5)
contrasts(df$stim cat) <- c¢(+0.5, -0.5)

priors <- c(

prior
prior
prior
prior

normal
normal
normal
normal

0,
0,
0,
0

14

(
(
(
(

prior (normal (0,

prior (exponential(l), class

)

5)’
1),
1),
1),

1),

class

class =
class =
class =

class

"Intercept"),

"Intercept", dpar = "bs"),
"Intercept", dpar = "ndt"),
"Intercept"”, dpar "bias"),

"b"),

= "sd")
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Drift-diffusion model in brms

We then fit this model using the brms: :brm() function. We run 8 chains for 5000 iterations and use the
first 1000 iterations as warmup, resulting in a total of 8 X (5000 — 1000) = 32000 posterior samples.

chains <- 8

epsilon <- 0.1

get init value <- function (x) list(Intercept ndt = rnorm(n = 1, mean epsilon) )
inits drift <- replicate(chains, get init value(-3), simplify = FALSE)

00 o Uk WN K-

]

fit wiener <- brm(
formula = formula,
data = df,

family = wiener(
link = "identity", link bs = "log",
link ndt = "log", link bias = "logit
) s

prior = priors,

init = inits drift,

init r = 0.05,

warmup = 1000, iter = 5000,
chains = chains, cores = chains,
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Aparté: Writing our model

Our model can be written (in a simplified form, omitting the varying effects) as:

RT; ~ DDM(a;, 7;, fi, 6;) Observation model for the RTs.
0i = Pors] + Pis) - Condition; + fos) - Stim_cat; + Linear model for the drift rate.
P31 - Condition; - Stim_cat;
log(a;) = Pora) + P11 - Condition, Linear model for the (log) boundary ¢
log(z;) = Por; + Py - Condition; Linear model for the (log) non-decisi
logit($;) = Porg + P11 - Condition; Linear model for the (logit) bias.
Pors1 ~ Normal(0, 5) Prior on the intercept for the drift rate
Pis1» P2rst» P3s) ~ Normal(0, 1) Prior on the slopes for the drift rate.
Poial» Pora» Porsy ~ Normal(0, 1) Prior on the intercept for the other pa
Piia)> Piias Prpy ~ Normal(0, 1) Prior on the slopes for the other parar

where i denotes observations (i.e,, lines in the dataframe).
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Assessing model convergence

plot(

= fit wiener, combo = c("dens overlay", "trace"),
variable = variables(fit wiener)[1:4],
ask = FALSE
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Assessing model fit 1/4

1 pp check(object = fit wiener, ndraws = 10) +

2 labs(x = "Reaction time", y = "Density")

Density
I
<

Yrep

1 2 3
Reaction time
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Assessing model fit 2/4

A powerful way to convey the relationship between response times and accuracy is using quantile
probability plots (Ratcliff & Tuerlinckx, 2002) which show quantiles of the response times distribution
(typically 0.1, 0.3, 0.5, 0.7, and 0.9) for correct and incorrect responses on the y-axis against probabilities of
correct and incorrect responses for experimental conditions on the x-axis. The plot is built by first

aggregating the data (cf. the detailed code online).

df gpf <- df %>%
mutate(acc = ifelse(as.character(stim cat) == as.character(response),
group by(stim cat, condition) %>%
apf () %>%
ungroup( )

head(df gpf)

A tibble: 6 x 6

stim cat condition rt g P g response
<fct> <fct> <dbl> <dbl> <dbl> <chr>
word accuracy .366 0.0147 0.1 incorrect
word accuracy .48 .0147 0] incorrect
word accuracy .504 0.0147 0] incorrect
word accuracy .533 0.0147 0.7 incorrect
word accuracy .786 0.0147 0 incorrect
word accuracy .449 0.985 0] correct

Ladislas Nalborczyk - IBSM2023
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Assessing model fit 3/4

This plot shows that words are recognised faster than non-words, that responses are generally faster in
the “speed” than in the “accuracy” condition, and that incorrect responses seem more variable than
correct responses.

accuracy
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o
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1
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Assessing model fit 4/4

The model fit is not so bad, but the model is unable to capture fast errors (bottom left), and more
generally, extreme quantiles...

accuracy
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Parameter estimates: differences in drift rate

We first check whether there is a difference in drift rate between conditions for words and non-words.
This shows that a non negligible part of the posterior mass is above zero, meaning there is some (weak)

evidence that the drift rate is greater in the accuracy than in the speed condition.

1 library(tidybayes)
2 library(emmeans)
3
drift rate samples per condition <- fit wiener %>%

4
5
6 emmeans (~condition * stim cat) %>%
7
8

gather emmeans draws()

word

nonword

2000

Number of posterior samples
)
o
(@]

-0.5 0

0 05

T
1.0

T
-0.5

1.0

‘
0.0 05

Difference in drift rate (accuracy - speed)
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Parameter estimates: differences in drift rate

samps <- drift rate samples per condition %>%
mutate(.value = if else(stim cat == "nonword", (-1) * .value, .value)
pivot wider(names_from = condition, values_ from = .value) %>%
mutate(accuracy speed diff = accuracy - speed)

posterior plot(
samples = sample(x = samps$accuracy speed diff, size = le3),
compval = 0, nbins 30

) + labs(x = "Difference in drift rate (accuracy - speed)")

mean = 0.14

18.4% <0< 81.6%

91% HDI

-0.11 0.45

05 0.0 0.5
Difference in drift rate (accuracy - speed)
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Parameter estimates: boundary separation

Recall that the boundary separation parameter can be interpreted as a measure of response caution
(with high a corresponding to high response caution), and that the linear model for this parameter is on
the log scale (i.e,, we used a log link function): log(a;) = py + f1 - Condition;. Therefore, we have to apply
the inverse link function (i.e.,, exp(-)) to the parameter to be able to interpret it. Taking exp(f;) gives the
proportional change in the value of the boundary-separation parameter when we go from the speed to
the accuracy condition (see upper right panel). In our case, exp(ff;) = 0.4, which means that going from
the speed to the accuracy condition leads to an increase of approximately 40% in the value of the
boundary-separation parameter. In other words, response caution is higher in the accuracy (lower right
panel) than in the speed (lower left panel) condition.

post <- as draws df(x = fit wiener)

posterior intercept bs <- post$b bs Intercept
posterior slope bs <- post$b bs conditionl

posterior bs speed <- exp(posterior intercept bs - 0.5 * posterior slope bs)

1
2
3
4
5
6
7
8
)

posterior bs accuracy <- exp(posterior intercept bs + 0.5 * posterior slope bs)
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Parameter

estimates: boundary separation
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Parameter estimates: non-decision time

Recall that the non-decision time parameter can be interpreted as a measure of the time used by non-
decisional processes such as stimulus encoding or motor response, and that the linear model for this
parameter is on the log scale (i.e., we used a log link function): log(z;) = By + f1 - Condition;. Therefore,
we have to apply the inverse link function (i.e., exp(-)) to the parameter to be able to interpret it. Taking
exp(f1) gives the proportional change in the value of the non-decision time parameter when we go from
the speed to the accuracy condition. In our case, exp(f}1) ~ 1.12 which means that going from the speed
to the accuracy condition leads to an increase of approximately 12% of the non-decision time. In other
words, non-decisional processes seem to take longer in the accuracy than in the speed condition.

posterior intercept ndt <- post$b ndt Intercept
posterior slope ndt <- post$b ndt conditionl

posterior ndt speed <- exp(posterior intercept ndt - 0.5 * posterior slope ndt)

posterior ndt accuracy <- exp(posterior intercept ndt + 0.5 * posterior slope ndt)

Ladislas Nalborczyk - IBSM2023
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Parameter

estimates: non-decision time
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Parameter estimates: starting point (bias)

The starting point is a measure of response bias towards one of the two response boundaries and is
bounded between 0 and 1. The linear model for this parameter is on the logit (log-odds) scale:

log( b ) = Py + 1 - Condition;. Therefore, we have to apply the inverse link function (i.e.,

1-p;
logit™' (B;) = logistic(f;) = 1+ex;(_ﬁ.) = e)?;(I,)B(gil)-l ) to the parameter to be able to interpret it on its natural

scale (i.e., between O and 1). There seems to be a bias toward the “word” responses in the accuracy
condition, but not (or less) in the speed condition.

posterior intercept bias <- post$b bias_Intercept
posterior slope bias <- post$b bias conditionl

posterior bias speed <- plogis(posterior intercept bias - 0.5 * posterior slope bias)

posterior bias accuracy <- plogis(posterior intercept bias + 0.5 * posterior slope bias)
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Parameter

estimates: starting

mo .54

0% < 0.5 <100%

I T T T T T T 1
050 051 052 053 054 055 056 057

inviogit(Boje)

[ T T 1
0.50 0.52 0.54 0.56

Qspeed

point (bias)

1.0 1.1 1.2 1.3
exp(ﬁcondition[a])
mod 56
0% < 0.5 <100%
—" | | [
T T T T 1
0.50 0.52 0.54 0.56 0.58
Qaccuracy
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Summary

Somehow unsurprisingly, we find that response caution is much higher in the accuracy than in the
speed condition, but the same goes for the drift rate and the non-decision time (to a lesser extent).

How do we know that these parameters actually refer to the processes we think they refer to? We check
that experimental manipulations that are supposed to only affect some component (rate of information
uptake, setting of response criteria, duration of the motor response and bias) effectively do (e.g., Ratcliff,
2002: Ratcliff & Rouder, 1998; Voss et al., 2004)

We can also check parameter values in different groups with known specificities (e.g., age-related
slowing in Ratcliff et al., 2000, 2001) or we can try validating the interpretation of these parameters by
using additional measures such as electrophysiogical (e.g., EMG, EEG) measures (e.g., Servant et al., 2021;
Weindel et al., 2021).
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Bayesian workflow (Gelman et al.,_ 2020)

Bayesian workflow™

Andrew Gelman®  Aki Vehtari* =~ Daniel Simpson®  Charles C. Margossian!
Bob Carpenter! Yuling Yaof Lauren Kennedy! Jonah Gabry'
Paul-Christian Biirkner** Martin Modrak

2 Nov 2020

Abstract

The Bayesian approach to data analysis provides a powerful way to handle uncertainty in all
observations, model parameters, and model structure using probability theory. Probabilistic
programming languages make it easier to specify and fit Bayesian models, but this still leaves
us with many options regarding constructing, evaluating, and using these models, along with
many remaining challenges in computation. Using Bayesian inference to solve real-world
problems requires not only statistical skills, subject matter knowledge, and programming, but
also awareness of the decisions made in the process of data analysis. All of these aspects
can be understood as part of a tangled workflow of applied Bayesian statistics. Beyond
inference, the workflow also includes iterative model building, model checking, validation and
troubleshooting of computational problems, model understanding, and model comparison. We
review all these aspects of workflow in the context of several examples, keeping in mind that
in practice we will be fitting many models for any given problem, even if only a subset of them
will ultimately be relevant for our conclusions.
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Bayesian workflow (Gelman et al.,_ 2020)
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Conclusions

Bayesian inference is a general approach to parameter estimation. This approach uses probability theory
to quantify the uncertainty with respect to the value of parameters from statistical models.

These models are composed of different blocks (e.g., likelihood function, priors, linear or non-linear
model), which are modifiable as desired. What we usually refer to as “model assumptions” are simply the
consequences of modelling choices. In other words, the user defines (and does not suffer) the model’s

assumptions.

We have seen that the linear regression model provides a very flexible architecture which makes possible
to describe, via the modification of the likelihood function and via the introduction of link functions,
complex (e.g., non-linear) relationships between outcomes and predictors. These models can gain in
precision by taking into account the variability and structures present in the data (cf. multilevel models).
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Conclusions

The brms package is a real Swiss army knife of Bayesian statistics in R. It allows you to fit almost any type
of regression model. This includes all models that we have seen, but also many others. Among others,
multivariate models (i.e., models with several outcomes), “distributional” models (e.g., to predict variance
differences), generalized additive models, Gaussian processes (Gaussian processes), models from signal
detection theory, mixture models, drift-diffusion models, non-linear models...

Do not hesitate to contact me for more information on these models or if you have questions about your
own data. You can also contact the creator of the brms package, who is very active online (see his site).
See also the Stan forum.
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https://fromthebottomoftheheap.net/2018/04/21/fitting-gams-with-brms/
https://rdrr.io/cran/brms/man/gp.html
https://mvuorre.github.io/posts/2017-10-09-bayesian-estimation-of-signal-detection-theory-models/
https://mvuorre.github.io/posts/2017-10-09-bayesian-estimation-of-signal-detection-theory-models/
https://www.martinmodrak.cz/2021/04/01/using-brms-to-model-reaction-times-contaminated-with-errors/
http://singmann.org/wiener-model-analysis-with-brms-part-i/
https://paul-buerkner.github.io/brms/articles/brms_nonlinear.html
https://paul-buerkner.github.io/about/
https://discourse.mc-stan.org/
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