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Planning
Course n°01: Introduction to Bayesian inference, Beta-Binomial model

Course n°02: Introduction to brms, linear regression

Course n°03: Markov Chain Monte Carlo, generalised linear model

Course n°04: Multilevel models, cognitive models

2

Ladislas Nalborczyk - IBSM2023



Multilevel models
The aim is to build a model that can learn at several levels, a model that can produce estimates that will

be informed by the different groups present in the data. We will follow the following example

throughout this course.

Let’s assume that we’ve built a robot that visits cafés and measures the waiting time after ordering a

coffee. This robot visits 20 different cafés, 5 times in the morning and 5 times in the afternoon, and

measures the time (in minutes) it takes to get a coffee.
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Co�ee robot
library(tidyverse)1
library(imsb)2

3
df <- open_data(robot)4
head(x = df, n = 15)5

   cafe afternoon      wait
1     1         0 4.9989926
2     1         1 2.2133944
3     1         0 4.1866730
4     1         1 3.5624399
5     1         0 3.9956779
6     1         1 2.8957176
7     1         0 3.7804582
8     1         1 2.3844837
9     1         0 3.8617982
10    1         1 2.5800004
11    2         0 2.7421223
12    2         1 1.3525907
13    2         0 2.5215095
14    2         1 0.9628102
15    2         0 1.9543977
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Co�ee robot
df %>%1
  ggplot(aes(x = factor(cafe), y = wait, fill = factor(afternoon) ) ) +2
  geom_dotplot(3
    stackdir = "center", binaxis = "y",4
    dotsize = 1, show.legend = FALSE5
    ) +6
  geom_hline(yintercept = mean(df$wait), linetype = 3) +7
  facet_wrap(~afternoon, ncol = 2) +8
  labs(x = "Café", y = "Waiting time (min)")9
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Co�ee robot, a �rst model
An initial model can be built, estimating the average time (across all cafés combined) to be served.

 wi

 μi

α 

σ 

∼ Normal( , σ)μi

= α

∼ Normal(5, 10)

∼ HalfCauchy(0, 2)
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Half-Cauchy

p(x | , γ) =x0 (πγ [1 + ])( )
x − x0

γ

2 −1

ggplot(data = data.frame(x = c(0, 10) ), aes(x = x) ) +1
    stat_function(2
        fun = dcauchy,3
        args = list(location = 0, scale = 2), size = 1.54
        )5
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Co�ee robot, a �rst model
library(brms)1

2
mod1 <- brm(3
  formula = wait ~ 1,4
  prior = c(5
    prior(normal(5, 10), class = Intercept),6
    prior(cauchy(0, 2), class = sigma)7
    ),8
  data = df,9
  cores = parallel::detectCores()10
  )11

posterior_summary(x = mod1, probs = c(0.025, 0.975), pars = c("^b_", "sigma") )1

            Estimate  Est.Error     Q2.5    Q97.5
b_Intercept 3.118251 0.08020407 2.956309 3.268246
sigma       1.143048 0.05675120 1.035605 1.259202
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Diagnostic plot
plot(x = mod1, combo = c("dens_overlay", "trace") )1
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One intercept per café
Second model which estimates one intercept per café. Equivalent to constructing 20 dummy variables.

 wi

 μi

 αcafé[i]

σ 

∼ Normal( , σ)μi

= αcafé[i]

∼ Normal(5, 10)

∼ HalfCauchy(0, 2)

mod2 <- brm(1
  formula = wait ~ 0 + factor(cafe),2
  prior = c(3
    prior(normal(5, 10), class = b),4
    prior(cauchy(0, 2), class = sigma)5
    ),6
  data = df,7
  cores = parallel::detectCores()8
  )9
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One intercept per café
posterior_summary(x = mod2, pars = "^b_")1

               Estimate Est.Error      Q2.5    Q97.5
b_factorcafe1  3.451085 0.2610853 2.9512768 3.974664
b_factorcafe2  1.724707 0.2618685 1.2119623 2.232001
b_factorcafe3  3.321328 0.2591069 2.8128314 3.818617
b_factorcafe4  2.795010 0.2491789 2.3113631 3.271451
b_factorcafe5  1.461022 0.2614662 0.9426324 1.981485
b_factorcafe6  3.637604 0.2580897 3.1300960 4.135650
b_factorcafe7  2.943423 0.2566098 2.4467521 3.447219
b_factorcafe8  3.167672 0.2568818 2.6596383 3.673230
b_factorcafe9  3.334906 0.2577492 2.8215052 3.834208
b_factorcafe10 3.096252 0.2613306 2.5830027 3.594380
b_factorcafe11 1.919792 0.2688887 1.4079115 2.432918
b_factorcafe12 3.487732 0.2518169 2.9864178 3.968451
b_factorcafe13 3.219461 0.2626960 2.7083647 3.729026
b_factorcafe14 2.630692 0.2653149 2.0847316 3.159034
b_factorcafe15 3.476996 0.2600783 2.9567007 3.996322
b_factorcafe16 3.005773 0.2583324 2.5112834 3.514806
b_factorcafe17 3.879522 0.2627024 3.3518362 4.399417
b_factorcafe18 5.527586 0.2586780 5.0194691 6.029890
b_factorcafe19 2.972815 0.2567997 2.4740427 3.487078
b_factorcafe20 3.364395 0.2704167 2.8278114 3.897341

11

Ladislas Nalborczyk - IBSM2023



Multilevel model
Couldn’t we ensure that the time measured at café 1 informs the measurement taken at café 2 and café

3? As well as the average time taken to be served? We’re going to learn the priors from the data…

The prior for the intercept of each coffee ( ) is now a function of two parameters (  and ).  and

 are called hyper-parameters, they are parameters for parameters, and their priors are called

hyperpriors. There are two levels in the model…

Level 1 :  wi

 μi

Level 2 :  αcafé

α 

 σcafé

σ 

∼ Normal( , σ)μi

= αcafé[i]

∼ Normal(α, )σcafé

∼ Normal(5, 10)

∼ HalfCauchy(0, 2)

∼ HalfCauchy(0, 2)

αcafé α σcafé α

σcafé
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Equivalences

NB:  is de�ned here in the prior for  but it could also be de�ned in the linear model:

We can always “remove” the mean from a Gaussian distribution and consider it as a constant plus a

Gaussian centred on zero.

 wi

 μi

 αcafé

∼ Normal( , σ)μi

= αcafé[i]

∼ Normal(α, )σcafé

α αcafé

 wi

 μi

 αcafé

∼ Normal( , σ)μi

= α + αcafé[i]

∼ Normal(0, )σcafé

NB: when  is de�ned in the linear model, the  represent deviations from the mean intercept. It is

therefore necessary to add  and  to obtain the average waiting time per café…

α αcafé

α αcafé
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Equivalences
y1 <- rnorm(n = 1e4, mean = 5, sd = 1)1
y2 <- rnorm(n = 1e4, mean = 0, sd = 1) + 52

3
data.frame(y1 = y1, y2 = y2) %>%4
    pivot_longer(cols = 1:2, names_to = "x", values_to = "y") %>%5
    ggplot(aes(x = y, colour = x) ) +6
    geom_density(show.legend = FALSE)7
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Multilevel model

This model has 23 parameters, the general intercept , the residual variability , the variability between

cafés and one intercept per café.

mod3 <- brm(1
  formula = wait ~ 1 + (1 | cafe),2
  prior = c(3
    prior(normal(5, 10), class = Intercept),4
    prior(cauchy(0, 2), class = sigma),5
    prior(cauchy(0, 2), class = sd)6
    ),7
  data = df,8
  warmup = 1000, iter = 5000,9
  cores = parallel::detectCores()10
  )11

α σ
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Shrinkage
17
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Shrinkage magic ( )

The James-Stein estimator is de�ned as , where  is the sample mean,  is an individual

observation, and  is a constant, the shrinking factor ( ).

Efron & Morris, 1977

z = + c(y − )ȳ ȳ ȳ y

c Efron & Morris, 1977
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Shrinkage magic ( )
The shrinking factor is determined both by the variability (imprecision) of the measurement (e.g., its

standard deviation) and by the distance to the mean estimate (i.e., ). In other words, this estimator is

less “con�dent” about (i.e., gives less weight to) imprecise and/or extreme observations. In practice,

shrinkage acts as a safeguard against overlearning (over�tting).

Efron & Morris, 1977

y − ȳ
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Pooling
The shrinkage observed on the previous slide is due to information pooling between cafés. The estimate

of the intercept for each café informs the intercept estimates of the other cafés, as well as the estimate of

the general intercept (i.e., the overall average waiting time).

There are generally three perspectives (or strategies):

Complete pooling: the waiting time is assumed to be invariant, a common intercept (mod1) is

estimated.

No pooling: it is assumed that each café’s waiting time is unique and independent: an intercept is

estimated for each café, but without informing the higher level (mod2).

Partial pooling: an adaptive prior is used, as in the previous example (mod3).

The complete pooling strategy generally under�ts the data (low predictive capacity) whereas the no

pooling strategy amounts to over�tting the data (low predictive capacity here too). The partial pooling

strategy (i.e., that of multilevel models) balances under�tting and over�tting.
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Model comparison
We can compare these models using indices derived from information theory (extensions of AIC), such as

the WAIC (the lower the better).

We note that model 3 has only 18 effective parameters (pWAIC) and fewer parameters than model 2,

whereas it actually has 2 more… posterior_summary(mod3)[3, 1] gives us the sigma of the adaptive

prior on  ( ). Note that this sigma is very low and corresponds to assigning a very

restrictive or regularising prior.

# computing the WAIC for each model and storing it1
mod1 <- add_criterion(mod1, "waic")2
mod2 <- add_criterion(mod2, "waic")3
mod3 <- add_criterion(mod3, "waic")4

5
# comparing these WAICs6
w <- loo_compare(mod1, mod2, mod3, criterion = "waic")7
print(w, simplify = FALSE)8

     elpd_diff se_diff elpd_waic se_elpd_waic p_waic se_p_waic waic   se_waic
mod3    0.0       0.0  -253.8       8.3         18.2    1.5     507.6   16.6 
mod2   -0.7       1.3  -254.5       8.4         19.6    1.6     509.1   16.8 
mod1  -57.3      10.6  -311.1      10.5          2.0    0.3     622.2   21.1 

αcafé = 0.82σcafé
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Model comparaison
We compare the estimates from the �rst (complete pooling) and third (partial pooling) model.

Both models make the same prediction (on average) for , but model 3 is more uncertain of its

prediction than model 1 (see the standard error for )…

posterior_summary(mod1, pars = c("^b", "sigma") )1

            Estimate  Est.Error     Q2.5    Q97.5
b_Intercept 3.118251 0.08020407 2.956309 3.268246
sigma       1.143048 0.05675120 1.035605 1.259202

posterior_summary(mod3, pars = c("^b", "sigma") )1

             Estimate Est.Error      Q2.5     Q97.5
b_Intercept 3.1226606 0.2075211 2.7209592 3.5347898
sigma       0.8221927 0.0440647 0.7409711 0.9137384

α

α

The  estimate of model 3 is smaller than that of model 1 because model 3 decomposes the unexplained

variability into two sources: variability in waiting time between cafés and the residual variability .

σ

σ
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Co�ee robot
Let’s assume that our robot doesn’t visit all the cafés the same number of times (as in the previous case)

but that it visits more often the cafés close to home…

df2 <- open_data(robot_unequal) # new dataset1
2

mod4 <- brm(3
  formula = wait ~ 1 + (1 | cafe),4
  prior = c(5
    prior(normal(5, 10), class = Intercept),6
    prior(cauchy(0, 2), class = sigma),7
    prior(cauchy(0, 2), class = sd)8
    ),9
  data = df2,10
  warmup = 1000, iter = 5000,11
  cores = parallel::detectCores()12
  )13
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Shrinkage
We can see that cafés that are visited frequently (right) are less affected by the effect of shrinkage. Their

estimates are less “pulled” towards the average than the estimates of the least frequently visited cafés

(left).
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Aparté: �xed and random e�ects
Five (contradictory) de�nitions identi�ed by Gelman ( ).2005

Fixed effects are constant across individuals, and random effects vary.

Effects are �xed if they are interesting in themselves or random if there is interest in the underlying

population.

When a sample exhausts the population, the corresponding variable is �xed; when the sample is a

small (i.e., negligible) part of the population the corresponding variable is random.

If an effect is assumed to be a realized value of a random variable, it is called a random effect.

Fixed effects are estimated using least squares (or, more generally, maximum likelihood) and random

effects are estimated with shrinkage.

Gelman & Hill ( ) suggest instead the use of the terms constant effcts and varying effects, and to

always use multilevel modelling, considering that the so-called �xed effect can simply be considered as

a random effect whose variance would be equal to (see also ).

2006

0 Nalborczyk et al., 2019
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Regularisation and terminology
Varying the intercepts for each café is simply another way of (adaptively) regularising, that is, reducing

the weight given to the data in the estimation. The model becomes able to estimate the extent to which

the groups (in this case the cafés) are different, while estimating the characteristics of each café…

Difference between cross-classi�ed (or “crossed”) multilevel models and nested or hierarchical

multilevel models. Cross-classi�ed models refer to data structured according to two (or more) non-

nested random factors. Hierarchical models usually refers to hierarchically structured data (e.g., a student

in a class in a school in a city…). See  for more details.this discussion

However, the two types of models are written in a similar way, on several “levels”. The term “multilevel” (in

our terminology) therefore refers to the structure of the model, to its speci�cation. It is distinct from the

structure of the data.
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Co�ee robot: varying intercept + varying slope
We are now interested in the effect of the time of day on the waiting time. Do we wait more in the

morning, or in the afternoon?

Where  is a dummy variable coded 0/1 for morning/afternoon and where  is therefore a difference

parameter (i.e., a slope) between morning and afternoon.

 wi

 μi

∼ Normal( , σ)μi

= + ×αcafé[i] βcafé[i] Ai

Ai βcafé

Note: we know that cafés have intercepts and slopes that co-vary… Popular cafés will be overcrowded in

the morning and much less in the afternoon, resulting in a negative slope. These cafés will also have a

longer average waiting time (i.e., a larger intercept). In these cafés,  is large and  is far from zero.

Conversely, in an unpopular café, the waiting time will be short, as well as the difference between the

morning and afternoon’s waiting time.

α β

We could therefore use the co-variation between the intercept and slope to make better inferences. In

other words, ensure that the estimate of the intercept informs the estimate of the slope, and reciprocally.
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Co�ee robot: varying intercept + varying slope
We are now interested in the effect of the time of day on the waiting time. Do we wait more in the

morning, or in the afternoon?

The third line posits that every café has an intercept  and a slope , de�ned by a bivariate (i.e.,

two-dimensional) Gaussian prior having as means  and  and as covariance matrix .

 wi

 μi

[ ]  
αcafé

βcafé

∼ Normal( , σ)μi

= + ×αcafé[i] βcafé[i] Ai

∼ MVNormal([ ] , S)
α

β

αcafé βcafé

α β S
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Aparté: multivariate Normal distribution

Where  is a ( -dimensional) vector of means, for instance: mu <- c(a, b).

x ∼  (μ, Σ)

μ k

 is a covariance matrix of  dimensions, and which corresponds to the matrix given by the function

vcov().

Σ k × k

Σ = ( )
σ2
α

ρσασβ

ρσασβ

σ2
β
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Aparté: multivariate Normal distribution
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Aparté: multivariate Normal distribution

This matrix can be constructed in two different ways, strictly equivalent.

Σ = ( )
σ2
α

ρσασβ

ρσασβ

σ2
β

sigma_a <- 11
sigma_b <- 0.752
rho <- 0.73
cov_ab <- sigma_a * sigma_b * rho4
(Sigma1 <- matrix(c(sigma_a^2, cov_ab, cov_ab, sigma_b^2), ncol = 2) )5

      [,1]   [,2]
[1,] 1.000 0.5250
[2,] 0.525 0.5625
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Aparté: multivariate Normal distribution

The second method is convenient because it considers separately the standard deviations and

correlations.

Σ = ( )
σ2
α

ρσασβ

ρσασβ

σ2
β

(sigmas <- c(sigma_a, sigma_b) ) # standard deviations1

[1] 1.00 0.75

(Rho <- matrix(c(1, rho, rho, 1), nrow = 2) ) # correlation matrix1

     [,1] [,2]
[1,]  1.0  0.7
[2,]  0.7  1.0

(Sigma2 <- diag(sigmas) %*% Rho %*% diag(sigmas) )1

      [,1]   [,2]
[1,] 1.000 0.5250
[2,] 0.525 0.5625
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Co�ee robot: varying intercept + varying slope

 is de�ned by factoring , , and the correlation matrix . The next lines of the model simply de�ne

priors for constant effects. The last line speci�es the prior for .

 wi

 μi

[ ]  
αcafé

βcafé

S 

α 

β 

 σα

 σβ

σ 

R 

∼ Normal( , σ)μi

= + ×αcafé[i] βcafé[i] Ai

∼ MVNormal([ ] , S)
α

β

= ( )  R( )
σα

0

0

σβ

σα

0

0

σβ

∼ Normal(0, 10)

∼ Normal(0, 10)

∼ HalfCauchy(0, 2)

∼ HalfCauchy(0, 2)

∼ HalfCauchy(0, 2)

∼ LKJ(2)

S σα σβ R

R
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LKJ prior
Prior proposed by Lewandowski et al. ( ). A single parameter  (zeta) speci�es the concentration of

the distribution of the correlation coef�cient. The  prior de�nes an weakly informative prior for 

(rho) which is sceptical of extreme correlations (i.e., values close to  or ).

2009 ζ

LKJ(2) ρ

−1 1
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Syntax reminders
The brms package uses the same syntax as R base functions (like lm) or the lme4 package.

The left-hand side de�nes the dependent variable (or “outcome”, i.e., what we are trying to predict).

Reaction ~ Days + (1 + Days | Subject)1

The right-hand side de�nes the predictors. The intercept is usually implied, so the two formulations

below are equivalent.

Reaction ~ Days + (1 + Days | Subject)1
Reaction ~ 1 + Days + (1 + Days | Subject)2
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Syntax reminders
The �rst part of the right-hand side of the formula represents the constant effects (�xed effects), whereas

the second part (between parentheses) represents varying effects (random effects).

The �rst model above contains only a varying intercept, which varies by Subject. The second model

contains a varying intercept, but also a varying slope for the effect of Days.

Reaction ~ 1 + Days + (1 | Subject)1
Reaction ~ 1 + Days + (1 + Days | Subject)2
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Syntax reminders
When including several varying effects (e.g., an intercept and a slope), brms assumes that we also want to

estimate the correlation between these effects. Otherwise, we can remove this correlation (i.e., set it to 0)

using ||.

Reaction ~ Days + (1 + Days || Subject)1

Previous models assumed a Gaussian generative model. This assumption can be changed easily by

specifying the desired function via the family argument.

brm(formula = Reaction ~ 1 + Days + (1 + Days | Subject), family = lognormal() )1
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Implementation of our model via brms
We specify an intercept and a slope (for the afternoon effect) which vary by cafe.

mod5 <- brm(1
  formula = wait ~ 1 + afternoon + (1 + afternoon | cafe),2
  prior = c(3
    prior(normal(0, 10), class = Intercept),4
    prior(normal(0, 10), class = b),5
    prior(cauchy(0, 2), class = sigma),6
    prior(cauchy(0, 2), class = sd)7
    ),8
  data = df,9
  warmup = 1000, iter = 5000,10
  cores = parallel::detectCores()11
  )12
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Posterior distribution
post <- as_draws_df(x = mod5) # extracting posterior samples1
R <- rethinking::rlkjcorr(n = 16000, K = 2, eta = 2) # samples from prior2

3
data.frame(prior = R[, 1, 2], posterior = post$cor_cafe__Intercept__afternoon) %>%4
    gather(type, value, prior:posterior) %>%5
    ggplot(aes(x = value, color = type, fill = type) ) +6
    geom_histogram(position = "identity", alpha = 0.2) +7
    labs(x = expression(rho), y = "Number of samples")8
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Two-dimensional shrinkage
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Model comparaison
We compare the �rst model (complete pooling model), the third model (partial pooling model), and the

last model (with varying intercept and slope).

mod5 <- add_criterion(mod5, "waic")1
w <- loo_compare(mod1, mod2, mod3, mod5, criterion = "waic")2
print(w, simplify = FALSE)3

     elpd_diff se_diff elpd_waic se_elpd_waic p_waic se_p_waic waic   se_waic
mod5    0.0       0.0  -155.1      10.0         26.5    2.6     310.2   20.1 
mod3  -98.7       8.3  -253.8       8.3         18.2    1.5     507.6   16.6 
mod2  -99.5       8.3  -254.5       8.4         19.6    1.6     509.1   16.8 
mod1 -156.0      13.7  -311.1      10.5          2.0    0.3     622.2   21.1 

model_weights(mod1, mod2, mod3, mod5, weights = "waic")1

        mod1         mod2         mod3         mod5 
1.763502e-68 6.397539e-44 1.337590e-43 1.000000e+00 
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Model comparaison
The estimate of the average waiting time is more uncertain when we takes into account new sources of

error. However, the overall error of the model (i.e., what is not explained), the residual variation ,

decreases…

σ

posterior_summary(mod1, pars = c("^b", "sigma") )1

            Estimate  Est.Error     Q2.5    Q97.5
b_Intercept 3.118251 0.08020407 2.956309 3.268246
sigma       1.143048 0.05675120 1.035605 1.259202

posterior_summary(mod3, pars = c("^b", "sigma") )1

             Estimate Est.Error      Q2.5     Q97.5
b_Intercept 3.1226606 0.2075211 2.7209592 3.5347898
sigma       0.8221927 0.0440647 0.7409711 0.9137384

posterior_summary(mod5, pars = c("^b", "sigma") )1

             Estimate  Est.Error       Q2.5      Q97.5
b_Intercept  3.740964 0.21779934  3.3144648  4.1799312
b_afternoon -1.232429 0.08622682 -1.4041576 -1.0647728
sigma        0.489634 0.02755458  0.4379875  0.5474008
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Conclusions
Multilevel models (or “mixed-effects models”) are natural extensions of classical (single-level) regression

models, where classical parameters are themselves assigned “models”, governed by hyper-parameters.

This extension makes it possible to make more precise predictions by taking into account the variability

related to groups or structures (clusters) present in the data. In other words, by modelling the

populations from which the varying effects are drawn (e.g., the population of participants or stimuli).

A single-level regression model is equivalent to a multilevel model where the variability of varying effects

would be �xed at .0

The Bayesian framework allows a natural interpretation of distributions from which the varying effects

come. Indeed, these distributions can be interpreted as prior distributions, whose parameters are

estimated from the data.
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Practical work - sleepstudy
library(lme4)1
data(sleepstudy)2
head(sleepstudy, 20)3

   Reaction Days Subject
1  249.5600    0     308
2  258.7047    1     308
3  250.8006    2     308
4  321.4398    3     308
5  356.8519    4     308
6  414.6901    5     308
7  382.2038    6     308
8  290.1486    7     308
9  430.5853    8     308
10 466.3535    9     308
11 222.7339    0     309
12 205.2658    1     309
13 202.9778    2     309
14 204.7070    3     309
15 207.7161    4     309
16 215.9618    5     309
17 213.6303    6     309
18 217.7272    7     309
19 224.2957    8     309
20 237.3142    9     309
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Practical work - sleepstudy
sleepstudy %>%1
    ggplot(aes(x = Days, y = Reaction) ) +2
    geom_smooth(method = "lm", colour = "black") +3
    geom_point() +4
    facet_wrap(~Subject, nrow = 2) +5
    scale_x_continuous(breaks = c(0, 2, 4, 6, 8) )6
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Practical work - sleepstudy
It’s up to you to build the mathematical models and brms models corresponding to the following

models:

A model with only the �xed effect of Days.

A model with the �xed effect of Days + a random effect of Subject (varying intercept).

A model with the �xed effect of Days + a random effect of Subject (varying intercept + varying slope

for Days).

Then, compare these models using model comparison tools and conclude.
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Proposed solution
# frequentist (flat-priors) models1
fmod0 <- lm(Reaction ~ Days, sleepstudy)2
fmod1 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)3
fmod2 <- lmer(Reaction ~ Days + (1 + Days | Subject), sleepstudy)4

5
# comparing fmod1 and fmod26
anova(fmod1, fmod2)7

Data: sleepstudy
Models:
fmod1: Reaction ~ Days + (1 | Subject)
fmod2: Reaction ~ Days + (1 + Days | Subject)
      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
fmod1    4 1802.1 1814.8 -897.04   1794.1                         
fmod2    6 1763.9 1783.1 -875.97   1751.9 42.139  2  7.072e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Proposed solution
mod6 <- brm(1
  Reaction ~ 1 + Days,2
  prior = c(3
    prior(normal(200, 100), class = Intercept),4
    prior(normal(0, 10), class = b),5
    prior(cauchy(0, 10), class = sigma)6
    ),7
  data = sleepstudy,8
  warmup = 1000, iter = 5000,9
  cores = parallel::detectCores()10
  )11

posterior_summary(mod6)1

              Estimate Est.Error        Q2.5      Q97.5
b_Intercept  251.88070  6.536260  239.019687  264.56435
b_Days        10.32575  1.222436    7.927364   12.71458
sigma         47.81060  2.545711   43.187711   53.16668
lprior       -15.69428  0.164818  -16.046503  -15.39603
lp__        -963.46880  1.225855 -966.580751 -962.07970
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Proposed solution
mod7 <- brm(1
  Reaction ~ 1 + Days + (1 | Subject),2
  prior = c(3
    prior(normal(200, 100), class = Intercept),4
    prior(normal(0, 10), class = b),5
    prior(cauchy(0, 10), class = sigma),6
    prior(cauchy(0, 10), class = sd)7
    ),8
  data = sleepstudy,9
  warmup = 1000, iter = 5000,10
  cores = parallel::detectCores()11
  )12

posterior_summary(mod7, pars = c("^b", "sigma") )1

             Estimate  Est.Error       Q2.5     Q97.5
b_Intercept 250.74661 10.0623899 230.812846 270.52849
b_Days       10.39303  0.8097478   8.790013  11.98756
sigma        31.07933  1.7373042  27.919034  34.68583
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Proposed solution
mod8 <- brm(1
  Reaction ~ 1 + Days + (1 + Days | Subject),2
  prior = c(3
    prior(normal(200, 100), class = Intercept),4
    prior(normal(0, 10), class = b),5
    prior(cauchy(0, 10), class = sigma),6
    prior(cauchy(0, 10), class = sd)7
    ),8
  data = sleepstudy,9
  warmup = 1000, iter = 5000,10
  cores = parallel::detectCores()11
  )12

posterior_summary(mod8, pars = c("^b", "sigma") )1

             Estimate Est.Error       Q2.5     Q97.5
b_Intercept 251.11727  7.042817 237.316651 265.01693
b_Days       10.06105  1.682028   6.654157  13.31108
sigma        25.85012  1.554566  22.983570  29.11508
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Proposed solution
# computing and storing the WAIC of each model1
mod6 <- add_criterion(mod6, "waic")2
mod7 <- add_criterion(mod7, "waic")3
mod8 <- add_criterion(mod8, "waic")4

5
# comparing the WAICs of these models6
w <- loo_compare(mod6, mod7, mod8, criterion = "waic")7
print(w, simplify = FALSE)8

     elpd_diff se_diff elpd_waic se_elpd_waic p_waic se_p_waic waic   se_waic
mod8    0.0       0.0  -860.0      22.2         32.5    8.1    1720.0   44.4 
mod7  -24.7      11.5  -884.7      14.4         19.2    3.3    1769.4   28.8 
mod6  -93.3      20.8  -953.3      10.6          3.2    0.5    1906.6   21.1 

# computing the relative weight of each model1
model_weights(mod6, mod7, mod8, weights = "waic")2

        mod6         mod7         mod8 
3.025212e-41 1.838528e-11 1.000000e+00 
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Scienti�c and cognitive modelling
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What is a model good for?

One of the most basic problem in scienti�c inference is the so-called inverse problem: How to

�gure out causes from observations. It is a problem, because many different causes can

produce the same evidence. So while it can be easy to go forward from a known cause to

predicted observations, it can very hard to go backwards from observation to cause

( ).

“
McElreath, 2020

So far, we have only considered statistical models. These models are useful devices to describe

associations, but they tell us nothing about how these associations arise. In the last part of the course, we

will focus on process models, aiming at describing the mechanisms generating the data (generative

models).
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Two-alternative forced choice
Two-alternative forced choice (2AFC) is a method for measuring the sensitivity of a person or animal to

some particular sensory input, stimulus, through that observer’s pattern of choices and response times

to two versions of the sensory input. At each trial, the participant is forced to choose between two

alternatives. For instance, in the random dot motion coherence task (below), the participant must make

a choice response between two directions of motion (e.g., up or down or left or right), usually indicated

by a motor response such as a saccade or pressing a button.
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Reaction times
Reaction times (RTs) distributions are generally positively skewed, with the skewness increasing with task

dif�culty. We also know that the mean of the RTs is proportional to the standard deviation of the RTs.

Increases in the dif�culty usually lead to increased RTs and decreased accuracy. Moreover, changes in

dif�culty also produces regular changes in the distribution of RTs, most notably in its spread but not

much in its shape (for a review, see ). Moreover, we often �nd a speed-accuracy

trade-off in these tasks.

Forstmann et al., 2016

The use of simple statistical model (e.g., only analysing differences in group-level average RTs across

conditions) is severely limited in such tasks. Therefore, several models have been proposed to account for

the peculiarities of the data coming from these tasks as well as to relate it to the underlying cognitive

processes.
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Assumptions
There are typically three assumptions made by evidence accumulation models:

Evidence favouring each alternative is integrated over time

The process is subject to random �uctuations

The decision is made when suf�cient evidence has accumulated favouring one alternative
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Drift-di�usion model
The drift-diffusion model (DDM) is a continuous-time evidence accumulation model for binary choice

tasks ( ). It assumes that in each trial evidence is accumulated in a noisy (diffusion) process by

a single accumulator. As shown below, evidence accumulation starts at some point (the starting point or

“bias”) and continues until the accumulator hits one of the two decision bounds in which case the

corresponding response is given. The total response time is the sum of the decision time from the

accumulation process plus non-decisional components ( ; 

; ). This kind of model provides a decomposition of RT data

that isolates components (of processing) from stimulus encoding to decision so that they can be studied

individually ( ; ).

Ratcliff, 1978

Vandekerckhove et al., 2010 Wabersich &

Vandekerckhove, 2014 Wagenmakers, 2009

Ratcliff & McKoon, 2008 Wagenmakers et al., 2007
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Drift-di�usion model
In sum, the original DDM allows decomposing responses to a binary choice tasks and corresponding

response times into four latent processes (from ):1Singmann, 2017

The drift rate  (delta) is the average slope of the accumulation process towards the boundaries (i.e., it

represents the average amount of evidence accumulated per unit time). The larger the (absolute value

of the) drift rate, the stronger the evidence for the corresponding response option (thus quantifying

the “ease of processing”).

δ

The boundary separation  (alpha) is the distance between the two decision bounds and can be

interpreted as a measure of response caution, with a high  corresponding to high caution.

α

α

The starting point (or bias)  (beta) of the accumulation process is a measure of response bias towards

one of the two response boundaries.

β

The non-decision time  (tau) captures all non-decisional processes such as stimulus encoding and

(motor) response processes.

τ
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Application example: lexical decision task
The lexical decision task is a procedure used in many psychology and psycholinguistics experiments. The

basic procedure involves measuring how quickly and accurately people classify stimuli as words or

nonwords.
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Application example: lexical decision task
We will adapt the example from Singmann ( ) and analyse part of the data from Experiment 1 of

Wagenmakers et al. ( ). The data comes from 17 participants performing a lexical decision task.

Participants made decisions under speed or accuracy emphasis instructions in different experimental

blocks. After removing some extreme RTs, we restrict the analysis to high-frequency words (frequency =

high) and the corresponding high-frequency non-words (frequency = nw_high) to reduce estimation

time. To setup the model, we also need a numeric response variable in which 0 corresponds to responses

at the lower response boundary and 1 corresponds to responses at the upper boundary.

2017

2008

# loading the "speed_acc" data from the "rtdists" package1
data(speed_acc, package = "rtdists")2

3
# reshaping the data4
df <- speed_acc %>%5
    # removing extreme RTs6
    filter(censor == FALSE) %>%7
    # removing ppt with id=2 (less observations than others)8
    filter(id != 2) %>%9
    # focusing on high-frequency words and non-words10
    filter(frequency %in% c("high", "nw_high") ) %>%11
    # converting the response variable to a numeric 0/1 variable12
    mutate(response2 = as.numeric(response == "word") ) %>%13
    # keeping only some proportion of the data (for computational ease)14
    filter(as.numeric(block) < 9) %>%15
    mutate(id = factor(id), block = factor(block) )16
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Drift-di�usion model in brms
An important decision that has to be made before setting up a model is which parameters are allowed to

differ between which conditions. One common constraint of the DDM is that parameters that are set

before the evidence accumulation process starts (i.e., boundary separation, starting point, and non-

decision time) cannot change based on stimulus characteristics that are not known to the participant

before the start of the trial. Thus, the stimulus category, in the present case word versus non-word, is

usually only allowed to affect the drift rate. We follow this constraint. Furthermore, all relevant variables

are manipulated within-subject. Thus, the maximal varying-effects structure ( ) can (and

should) be implemented.

Barr et al., 2013

# defining the model formula (one "linear model" per parameter)1
formula <- brmsformula(2
  # drift rate (delta)3
  rt | dec(response2) ~ 1 + condition * stim_cat + (1 + condition * stim_cat | id),4
  # boundary separation parameter (alpha)5
  bs ~ 1 + condition + (1 + condition | id),6
  # non-decision time (tau)7
  ndt ~ 1 + condition + (1 + condition | id),8
  # starting point or bias (beta)9
  bias ~ 1 + condition + (1 + condition | id)10
  )11
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Drift-di�usion model in brms
# defining the contrasts1
contrasts(df$condition) <- c(+0.5, -0.5)2
contrasts(df$stim_cat) <- c(+0.5, -0.5)3

4
# defining the priors5
priors <- c(6
  # priors for the intercepts7
  prior(normal(0, 5), class = "Intercept"),8
  prior(normal(0, 1), class = "Intercept", dpar = "bs"),9
  prior(normal(0, 1), class = "Intercept", dpar = "ndt"),10
  prior(normal(0, 1), class = "Intercept", dpar = "bias"),11
  # priors for the slopes12
  prior(normal(0, 1), class = "b"),13
  # priors on the SD of the varying effects14
  prior(exponential(1), class = "sd")15
  )16
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Drift-di�usion model in brms
We then �t this model using the brms::brm() function. We run 8 chains for 5000 iterations and use the

�rst 1000 iterations as warmup, resulting in a total of  posterior samples.8 × (5000 − 1000) = 32000

# specify initial values to help the model start sampling1
# (with small variation between chains)2
chains <- 8 # number of chains3
epsilon <- 0.1 # variability in starting value for the NDT intercept4
get_init_value <- function (x) list(Intercept_ndt = rnorm(n = 1, mean = x, sd = epsilon) )5
inits_drift <- replicate(chains, get_init_value(-3), simplify = FALSE)6

7
# fitting the model8
fit_wiener <- brm(9
  formula = formula,10
  data = df,11
  # specifying the family and link functions for each parameter12
  family = wiener(13
    link = "identity", link_bs = "log",14
    link_ndt = "log", link_bias = "logit"15
    ),16
  # comment this line to use default priors17
  prior = priors,18
  # list of initialisation values19
  init = inits_drift,20
  init_r = 0.05,21
  warmup = 1000, iter = 5000,22
  chains = chains, cores = chains,23
  # control = list(adapt_delta = 0.99, max_treedepth = 15),24
  # saves the model (as .rds) or loads it if it already exists25

fil " d l /dd d "26
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Aparté: Writing our model
Our model can be written (in a simpli�ed form, omitting the varying effects) as:

where  denotes observations (i.e., lines in the dataframe).

RTi

δi

log( )αi

log( )τi

logit( )βi

β0[δ]

, ,β1[δ] β2[δ] β3[δ]

, ,β0[α] β0[τ] β0[β]

, ,β1[α] β1[τ] β1[β]

∼ DDM( , , , )αi τi βi δi

= + ⋅ + ⋅ +  β0[δ] β1[δ] Conditioni β2[δ] Stim_cati

      ⋅ ⋅β3[δ] Conditioni Stim_cati

= + ⋅β0[α] β1[α] Conditioni

= + ⋅β0[τ] β1[τ] Conditioni

= + ⋅β0[β] β1[β] Conditioni

∼ Normal(0, 5)

∼ Normal(0, 1)

∼ Normal(0, 1)

∼ Normal(0, 1)

Observation model for the RTs.

Linear model for the drift rate.

Linear model for the (log) boundary s

Linear model for the (log) non-decisi

Linear model for the (logit) bias.

Prior on the intercept for the drift rate

Prior on the slopes for the drift rate.

Prior on the intercept for the other pa

Prior on the slopes for the other param

i
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Assessing model convergence
# combo can be hist, dens, dens_overlay, trace, trace_highlight...1
# cf. https://mc-stan.org/bayesplot/reference/MCMC-overview.html2
plot(3
    x = fit_wiener, combo = c("dens_overlay", "trace"),4
    variable = variables(fit_wiener)[1:4],5
    ask = FALSE6
    )7
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Assessing model �t 1/4
pp_check(object = fit_wiener, ndraws = 10) +1
  labs(x = "Reaction time", y = "Density")2
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Assessing model �t 2/4
A powerful way to convey the relationship between response times and accuracy is using quantile

probability plots ( ) which show quantiles of the response times distribution

(typically 0.1, 0.3, 0.5, 0.7, and 0.9) for correct and incorrect responses on the y-axis against probabilities of

correct and incorrect responses for experimental conditions on the x-axis. The plot is built by �rst

aggregating the data (cf. the detailed code online).

Ratcliff & Tuerlinckx, 2002

# aggregating the data using the qpf() function from1
# https://vasishth.github.io/bayescogsci/book/ch-lognormalrace.html#sec-acccoding2
df_qpf <- df %>%3
    mutate(acc = ifelse(as.character(stim_cat) == as.character(response), 1, 0) ) %>%4
    group_by(stim_cat, condition) %>%5
    qpf() %>%6
    ungroup()7

8
head(df_qpf)9

# A tibble: 6 × 6
  stim_cat condition  rt_q      p     q response 
  <fct>    <fct>     <dbl>  <dbl> <dbl> <chr>    
1 word     accuracy  0.366 0.0147   0.1 incorrect
2 word     accuracy  0.48  0.0147   0.3 incorrect
3 word     accuracy  0.504 0.0147   0.5 incorrect
4 word     accuracy  0.533 0.0147   0.7 incorrect
5 word     accuracy  0.786 0.0147   0.9 incorrect
6 word     accuracy  0.449 0.985    0.1 correct  
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Assessing model �t 3/4
This plot shows that words are recognised faster than non-words, that responses are generally faster in

the “speed” than in the “accuracy” condition, and that incorrect responses seem more variable than

correct responses.
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Assessing model �t 4/4
The model �t is not so bad, but the model is unable to capture fast errors (bottom left), and more

generally, extreme quantiles…
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Parameter estimates: di�erences in drift rate
We �rst check whether there is a difference in drift rate between conditions for words and non-words.

This shows that a non negligible part of the posterior mass is above zero, meaning there is some (weak)

evidence that the drift rate is greater in the accuracy than in the speed condition.

library(tidybayes)1
library(emmeans)2

3
drift_rate_samples_per_condition <- fit_wiener %>%4
    # retrieving drift rate values per condition5
    emmeans(~condition * stim_cat) %>%6
    # retrieving posterior sample for each cell7
    gather_emmeans_draws()8
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Parameter estimates: di�erences in drift rate
samps <- drift_rate_samples_per_condition %>%1
    mutate(.value = if_else(stim_cat == "nonword", (-1) * .value, .value) ) %>% 2
    pivot_wider(names_from = condition, values_from = .value) %>%3
    mutate(accuracy_speed_diff = accuracy - speed)4

5
posterior_plot(6
    samples = sample(x = samps$accuracy_speed_diff, size = 1e3),7
    compval = 0, nbins = 308
    ) + labs(x = "Difference in drift rate (accuracy - speed)")9
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Parameter estimates: boundary separation
Recall that the boundary separation parameter can be interpreted as a measure of response caution

(with high  corresponding to high response caution), and that the linear model for this parameter is on

the log scale (i.e., we used a log link function): . Therefore, we have to apply

the inverse link function (i.e., ) to the parameter to be able to interpret it. Taking  gives the

proportional change in the value of the boundary-separation parameter when we go from the speed to

the accuracy condition (see upper right panel). In our case, , which means that going from

the speed to the accuracy condition leads to an increase of approximately 40% in the value of the

boundary-separation parameter. In other words, response caution is higher in the accuracy (lower right

panel) than in the speed (lower left panel) condition.

α

log( ) = + ⋅αi β0 β1 Conditioni

exp(⋅) exp( )β1

exp( ) ≈ 0.4β1

# retrieving posterior samples1
post <- as_draws_df(x = fit_wiener)2
# retrieving the posterior samples for the boundary-separation3
posterior_intercept_bs <- post$b_bs_Intercept4
posterior_slope_bs <- post$b_bs_condition15
# computing the posterior distribution in the speed condition6
posterior_bs_speed <- exp(posterior_intercept_bs - 0.5 * posterior_slope_bs)7
# computing the posterior distribution in the accuracy condition8
posterior_bs_accuracy <- exp(posterior_intercept_bs + 0.5 * posterior_slope_bs)9

74

Ladislas Nalborczyk - IBSM2023



Parameter estimates: boundary separation
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Parameter estimates: non-decision time
Recall that the non-decision time parameter can be interpreted as a measure of the time used by non-

decisional processes such as stimulus encoding or motor response, and that the linear model for this

parameter is on the log scale (i.e., we used a log link function): . Therefore,

we have to apply the inverse link function (i.e., ) to the parameter to be able to interpret it. Taking

 gives the proportional change in the value of the non-decision time parameter when we go from

the speed to the accuracy condition. In our case,  which means that going from the speed

to the accuracy condition leads to an increase of approximately 12% of the non-decision time. In other

words, non-decisional processes seem to take longer in the accuracy than in the speed condition.

log( ) = + ⋅τi β0 β1 Conditioni

exp(⋅)

exp( )β1

exp( ) ≈ 1.12β1

# retrieves the posterior samples for the non-decision time1
posterior_intercept_ndt <- post$b_ndt_Intercept2
posterior_slope_ndt <- post$b_ndt_condition13
# computes the posterior distribution in the speed condition4
posterior_ndt_speed <- exp(posterior_intercept_ndt - 0.5 * posterior_slope_ndt)5
# computes the posterior distribution in the accuracy condition6
posterior_ndt_accuracy <- exp(posterior_intercept_ndt + 0.5 * posterior_slope_ndt)7
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Parameter estimates: non-decision time
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Parameter estimates: starting point (bias)
The starting point is a measure of response bias towards one of the two response boundaries and is

bounded between 0 and 1. The linear model for this parameter is on the logit (log-odds) scale:

. Therefore, we have to apply the inverse link function (i.e.,

) to the parameter to be able to interpret it on its natural

scale (i.e., between 0 and 1). There seems to be a bias toward the “word” responses in the accuracy

condition, but not (or less) in the speed condition.

log( ) = + ⋅
βi

1−βi

β0 β1 Conditioni

( ) = logistic( ) = =logit−1 βi βi
1

1+exp(− )β
i

exp( )βi

exp( )+1β
i

# retrieves the posterior samples for the bias1
posterior_intercept_bias <- post$b_bias_Intercept2
posterior_slope_bias <- post$b_bias_condition13
# computes the posterior distribution in the speed condition4
posterior_bias_speed <- plogis(posterior_intercept_bias - 0.5 * posterior_slope_bias)5
# computes the posterior distribution in the accuracy condition6
posterior_bias_accuracy <- plogis(posterior_intercept_bias + 0.5 * posterior_slope_bias)7
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Parameter estimates: starting point (bias)
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Summary
Somehow unsurprisingly, we �nd that response caution is much higher in the accuracy than in the

speed condition, but the same goes for the drift rate and the non-decision time (to a lesser extent).

How do we know that these parameters actually refer to the processes we think they refer to? We check

that experimental manipulations that are supposed to only affect some component (rate of information

uptake, setting of response criteria, duration of the motor response and bias) effectively do (e.g., 

; ; )

Ratcliff,

2002 Ratcliff & Rouder, 1998 Voss et al., 2004

We can also check parameter values in different groups with known speci�cities (e.g., age-related

slowing in , ) or we can try validating the interpretation of these parameters by

using additional measures such as electrophysiogical (e.g., EMG, EEG) measures (e.g., ;

).

Ratcliff et al., 2000 2001

Servant et al., 2021

Weindel et al., 2021
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Conclusions
Bayesian inference is a general approach to parameter estimation. This approach uses probability theory

to quantify the uncertainty with respect to the value of parameters from statistical models.

These models are composed of different blocks (e.g., likelihood function, priors, linear or non-linear

model), which are modi�able as desired. What we usually refer to as “model assumptions” are simply the

consequences of modelling choices. In other words, the user de�nes (and does not suffer) the model’s

assumptions.

We have seen that the linear regression model provides a very �exible architecture which makes possible

to describe, via the modi�cation of the likelihood function and via the introduction of link functions,

complex (e.g., non-linear) relationships between outcomes and predictors. These models can gain in

precision by taking into account the variability and structures present in the data (cf. multilevel models).
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Conclusions
The brms package is a real Swiss army knife of Bayesian statistics in R. It allows you to �t almost any type

of regression model. This includes all models that we have seen, but also many others. Among others,

multivariate models (i.e., models with several outcomes), “distributional” models (e.g., to predict variance

differences), ,  (Gaussian processes), models from 

, , , …

Do not hesitate to contact me for more information on these models or if you have questions about your

own data. You can also contact the creator of the brms package, who is very active online (see ).

See also the .

generalized additive models Gaussian processes signal

detection theory mixture models drift-diffusion models non-linear models

his site

Stan forum
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https://fromthebottomoftheheap.net/2018/04/21/fitting-gams-with-brms/
https://rdrr.io/cran/brms/man/gp.html
https://mvuorre.github.io/posts/2017-10-09-bayesian-estimation-of-signal-detection-theory-models/
https://mvuorre.github.io/posts/2017-10-09-bayesian-estimation-of-signal-detection-theory-models/
https://www.martinmodrak.cz/2021/04/01/using-brms-to-model-reaction-times-contaminated-with-errors/
http://singmann.org/wiener-model-analysis-with-brms-part-i/
https://paul-buerkner.github.io/brms/articles/brms_nonlinear.html
https://paul-buerkner.github.io/about/
https://discourse.mc-stan.org/
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