'data.frame': 544 obs. of 4 variables:
$ height: num 152 140 137 157 145 ...
$ weight: num 47.8 36.5 31.9 53 41.3 ...
$ age : num 63 63 65 41 51 35 32 27 19 54 ...
$ male : int 1 0 0 1 0 1 0 1 0 1 ...
Un cours en R, Stan, et brms
Ladislas Nalborczyk (LPC, LNC, CNRS, Aix-Marseille Univ)
Cours n°01 : Introduction à l’inférence bayésienne
Cours n°02 : Modèle Beta-Binomial
Cours n°03 : Introduction à brms, modèle de régression linéaire
Cours n°04 : Modèle de régression linéaire (suite)
Cours n°05 : Markov Chain Monte Carlo
Cours n°06 : Modèle linéaire généralisé
Cours n°07 : Comparaison de modèles
Cours n°08 : Modèles multi-niveaux
Cours n°09 : Modèles multi-niveaux généralisés
Cours n°10 : Data Hackathon
\[\newcommand\given[1][]{\:#1\vert\:}\]
\[ \begin{align} y_{i} &\sim \mathrm{Normal}(\mu_{i}, \sigma) \\ \mu_{i}&= \alpha + \beta x_{i} \\ \alpha &\sim \mathrm{Normal}(60, 10) \\ \beta &\sim \mathrm{Normal}(0, 10) \\ \sigma &\sim \mathrm{HalfCauchy}(0, 1) \end{align} \]
Objectif de la séance : comprendre ce type de modèle.
Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :
'data.frame': 544 obs. of 4 variables:
$ height: num 152 140 137 157 145 ...
$ weight: num 47.8 36.5 31.9 53 41.3 ...
$ age : num 63 63 65 41 51 35 32 27 19 54 ...
$ male : int 1 0 0 1 0 1 0 1 0 1 ...
\[h_{i} \sim \mathrm{Normal}(\mu, \sigma)\]
\[ p(x \given \mu, \sigma) = \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \bigg[-\frac{1}{2 \sigma^{2}} (\mu - x)^{2} \bigg] \]
Contraintes : Certaines valeurs soient fortement probables (autour de la moyenne \(\mu\)). Plus on s’éloigne, moins les valeurs sont probables (en suivant une décroissance exponentielle).
\[ y = \exp \big[-x^{2} \big] \]
On étend notre fonction aux valeurs négatives.
\[ y = \exp \big[-x^{2} \big] \]
Les points d’inflection nous donnent une bonne indication de là où la plupart des valeurs se trouvent (i.e., entre les points d’inflection). Les pics de la dérivée nous montrent les points d’inflection.
\[ y = \exp \bigg [- \frac{1}{2} x^{2} \bigg] \]
Ensuite on standardise la distribution de manière à ce que les deux points d’inflection se trouvent à \(x = -1\) et \(x = 1\).
\[ y = \exp \bigg [- \frac{1}{2 \color{steelblue}{\sigma^{2}}} x^{2} \bigg] \]
On insère un paramètre \(\sigma^{2}\) pour contrôler la distance entre les points d’inflection.
\[ y = \exp \bigg [- \frac{1}{2 \color{steelblue}{\sigma^{2}}} (\color{orangered}{\mu} - x)^{2} \bigg] \]
On insère ensuite un paramètre \(\mu\) afin de pouvoir contrôler la position (la tendance centrale) de la distribution.
\[ y = \frac{1}{\sqrt{2 \pi \color{steelblue}{\sigma^{2}}}} \exp \bigg[-\frac{1}{2 \color{steelblue}{\sigma^{2}}} (\color{orangered}{\mu} - x)^{2} \bigg] \]
Mais… cette distribution n’intègre pas à 1. On divise donc par une constante de normalisation (la partie gauche), afin d’obtenir une distribution de probabilité.
Nous allons construire un modèle de régression, mais avant d’ajouter un prédicteur, essayons de modéliser la distribution des tailles.
On cherche à savoir quel est le modèle (la distribution) qui décrit le mieux la répartition des tailles. On va donc explorer toutes les combinaisons possibles de \(\mu\) et \(\sigma\) et les classer par leurs probabilités respectives.
Notre but, une fois encore, est de décrire la distribution postérieure, qui sera donc d’une certaine manière une distribution de distributions.
On définit \(p(\mu, \sigma)\), la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que \(p(\mu, \sigma) = p(\mu) p(\sigma)\).
\[\color{steelblue}{\mu \sim \mathrm{Normal}(178, 20)}\]
On définit \(p(\mu, \sigma)\), la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que \(p(\mu, \sigma) = p(\mu) p(\sigma)\).
\[\color{steelblue}{\sigma \sim \mathrm{Uniform}(0, 50)}\]
library(ks)
sample_mu <- rnorm(1e4, 178, 20) # prior on mu
sample_sigma <- runif(1e4, 0, 50) # prior on sigma
prior <- data.frame(cbind(sample_mu, sample_sigma) ) # multivariate prior
H.scv <- Hscv(x = prior, verbose = TRUE)
fhat_prior <- kde(x = prior, H = H.scv, compute.cont = TRUE)
plot(
fhat_prior, display = "persp", col = "steelblue", border = NA,
xlab = "\nmu", ylab = "\nsigma", zlab = "\n\np(mu, sigma)",
shade = 0.8, phi = 30, ticktype = "detailed",
cex.lab = 1.2, family = "Helvetica")