Introduction à la modélisation statistique bayésienne

Un cours en R, Stan, et brms

Ladislas Nalborczyk (LPC, LNC, CNRS, Aix-Marseille Univ)

Planning

Cours n°01 : Introduction à l’inférence bayésienne
Cours n°02 : Modèle Beta-Binomial
Cours n°03 : Introduction à brms, modèle de régression linéaire
Cours n°04 : Modèle de régression linéaire (suite)
Cours n°05 : Markov Chain Monte Carlo
Cours n°06 : Modèle linéaire généralisé
Cours n°07 : Comparaison de modèles
Cours n°08 : Modèles multi-niveaux
Cours n°09 : Modèles multi-niveaux généralisés
Cours n°10 : Data Hackathon

\[\newcommand\given[1][]{\:#1\vert\:}\]

Langage de la modélisation

\[ \begin{align} y_{i} &\sim \mathrm{Normal}(\mu_{i}, \sigma) \\ \mu_{i}&= \alpha + \beta x_{i} \\ \alpha &\sim \mathrm{Normal}(60, 10) \\ \beta &\sim \mathrm{Normal}(0, 10) \\ \sigma &\sim \mathrm{HalfCauchy}(0, 1) \end{align} \]

Objectif de la séance : comprendre ce type de modèle.

Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :

  • Construire le modèle (likelihood + priors).
  • Mettre à jour grâce aux données, afin de calculer la distribution postérieure.
  • Interpréter les estimations du modèle, évaluer ses prédictions, éventuellement modifier le modèle.

Un premier modèle

library(tidyverse)
library(imsb)

d <- open_data(howell)
str(d)
'data.frame':   544 obs. of  4 variables:
 $ height: num  152 140 137 157 145 ...
 $ weight: num  47.8 36.5 31.9 53 41.3 ...
 $ age   : num  63 63 65 41 51 35 32 27 19 54 ...
 $ male  : int  1 0 0 1 0 1 0 1 0 1 ...
d2 <- d %>% filter(age >= 18)
head(d2)
   height   weight age male
1 151.765 47.82561  63    1
2 139.700 36.48581  63    0
3 136.525 31.86484  65    0
4 156.845 53.04191  41    1
5 145.415 41.27687  51    0
6 163.830 62.99259  35    1

Un premier modèle

\[h_{i} \sim \mathrm{Normal}(\mu, \sigma)\]

d2 %>%
    ggplot(aes(x = height) ) +
    geom_histogram(aes(y = ..density..), bins = 20, col = "white") +
    stat_function(fun = dnorm, args = list(mean(d2$height), sd(d2$height) ), size = 1)

Loi normale

\[ p(x \given \mu, \sigma) = \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \bigg[-\frac{1}{2 \sigma^{2}} (\mu - x)^{2} \bigg] \]

data.frame(value = rnorm(n = 1e4, mean = 10, sd = 1) ) %>% # 10.000 samples from Normal(10, 1)
    ggplot(aes(x = value) ) +
    geom_histogram(col = "white")

D’où vient la loi normale ?

Contraintes : Certaines valeurs soient fortement probables (autour de la moyenne \(\mu\)). Plus on s’éloigne, moins les valeurs sont probables (en suivant une décroissance exponentielle).

D’où vient la loi normale ?

\[ y = \exp \big[-x^{2} \big] \]

On étend notre fonction aux valeurs négatives.

D’où vient la loi normale ?

\[ y = \exp \big[-x^{2} \big] \]

Les points d’inflection nous donnent une bonne indication de là où la plupart des valeurs se trouvent (i.e., entre les points d’inflection). Les pics de la dérivée nous montrent les points d’inflection.

D’où vient la loi normale ?

\[ y = \exp \bigg [- \frac{1}{2} x^{2} \bigg] \]

Ensuite on standardise la distribution de manière à ce que les deux points d’inflection se trouvent à \(x = -1\) et \(x = 1\).

D’où vient la loi normale ?

\[ y = \exp \bigg [- \frac{1}{2 \color{steelblue}{\sigma^{2}}} x^{2} \bigg] \]

On insère un paramètre \(\sigma^{2}\) pour contrôler la distance entre les points d’inflection.

D’où vient la loi normale ?

\[ y = \exp \bigg [- \frac{1}{2 \color{steelblue}{\sigma^{2}}} (\color{orangered}{\mu} - x)^{2} \bigg] \]

On insère ensuite un paramètre \(\mu\) afin de pouvoir contrôler la position (la tendance centrale) de la distribution.

D’où vient la loi normale ?

\[ y = \frac{1}{\sqrt{2 \pi \color{steelblue}{\sigma^{2}}}} \exp \bigg[-\frac{1}{2 \color{steelblue}{\sigma^{2}}} (\color{orangered}{\mu} - x)^{2} \bigg] \]

Mais… cette distribution n’intègre pas à 1. On divise donc par une constante de normalisation (la partie gauche), afin d’obtenir une distribution de probabilité.

Modèle gaussien

Nous allons construire un modèle de régression, mais avant d’ajouter un prédicteur, essayons de modéliser la distribution des tailles.

On cherche à savoir quel est le modèle (la distribution) qui décrit le mieux la répartition des tailles. On va donc explorer toutes les combinaisons possibles de \(\mu\) et \(\sigma\) et les classer par leurs probabilités respectives.

Notre but, une fois encore, est de décrire la distribution postérieure, qui sera donc d’une certaine manière une distribution de distributions.

Modèle gaussien

On définit \(p(\mu, \sigma)\), la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que \(p(\mu, \sigma) = p(\mu) p(\sigma)\).

\[\color{steelblue}{\mu \sim \mathrm{Normal}(178, 20)}\]

Modèle gaussien

On définit \(p(\mu, \sigma)\), la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que \(p(\mu, \sigma) = p(\mu) p(\sigma)\).

\[\color{steelblue}{\sigma \sim \mathrm{Uniform}(0, 50)}\]

Visualiser le prior

library(ks)
sample_mu <- rnorm(1e4, 178, 20) # prior on mu
sample_sigma <- runif(1e4, 0, 50) # prior on sigma
prior <- data.frame(cbind(sample_mu, sample_sigma) ) # multivariate prior
H.scv <- Hscv(x = prior, verbose = TRUE)
fhat_prior <- kde(x = prior, H = H.scv, compute.cont = TRUE)
plot(
    fhat_prior, display = "persp", col = "steelblue", border = NA,
    xlab = "\nmu", ylab = "\nsigma", zlab = "\n\np(mu, sigma)",
    shade = 0.8, phi = 30, ticktype = "detailed",
    cex.lab = 1.2, family = "Helvetica")

Prior predictive checking

sample_mu <- rnorm(1000, 178, 20)
sample_sigma <- runif(1000, 0, 50)

data.frame(x = rnorm(1000, sample_mu, sample_sigma) ) %>%
    ggplot(aes(x) ) +
    geom_histogram() +
    labs(x = "Taille (en cm)", y = "Nombre d'échantillons")

Fonction de vraisemblance

mu_exemple <- 151.23
sigma_exemple <- 23.42

d2$height[34] # une observation de taille (pour exemple)
[1] 162.8648

Fonction de vraisemblance

On veut calculer la probabilité d’observer une certaine valeur de taille, sachant certaines valeurs de \(\mu\) et \(\sigma\), c’est à dire :

\[ p(x \given \mu, \sigma) = \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \bigg[-\frac{1}{2 \sigma^{2}} (\mu - x)^{2} \bigg] \]

On peut calculer cette densité de probabilité à l’aide des fonctions dnorm, dbeta, dt, dexp, dgamma, etc.

dnorm(d2$height[34], mu_exemple, sigma_exemple)
[1] 0.01505675

Fonction de vraisemblance

\[ p(x \given \mu, \sigma) = \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \bigg[-\frac{1}{2 \sigma^{2}} (\mu - x)^{2} \bigg] \]

Ou avec une fonction maison…

normal_likelihood <- function (x, mu, sigma) {
  
  bell <- exp( (- 1 / (2 * sigma^2) ) * (mu - x)^2 )
  norm <- sqrt(2 * pi * sigma^2)
  
  return(bell / norm)
  
}
normal_likelihood(d2$height[34], mu_exemple, sigma_exemple)
[1] 0.01505675

Distribution postérieure

\[ \color{purple}{p(\mu, \sigma \given h)} = \frac{\prod_{i} \color{orangered}{\mathrm{Normal}(h_{i} \given \mu, \sigma)}\color{steelblue}{\mathrm{Normal}(\mu \given 178, 20)\mathrm{Uniform}(\sigma \given 0, 50)}} {\color{green}{\int \int \prod_{i} \mathrm{Normal}(h_{i} \given \mu, \sigma)\mathrm{Normal}(\mu \given 178, 20)\mathrm{Uniform}(\sigma \given 0, 50) \mathrm{d} \mu \mathrm{d} \sigma}} \]

\[ \color{purple}{p(\mu, \sigma \given h)} \propto \prod_{i} \color{orangered}{\mathrm{Normal}(h_{i} \given \mu, \sigma)}\color{steelblue}{\mathrm{Normal}(\mu \given 178, 20)\mathrm{Uniform}(\sigma \given 0, 50)} \]

Il s’agit de la même formule vue lors des cours 1 et 2, mais cette fois en considérant qu’il existe plusieurs observations de taille (\(h_{i}\)), et deux paramètres à estimer : \(\mu\) et \(\sigma\).

Pour calculer la vraisemblance marginale (en vert), il faut donc intégrer sur deux paramètres : \(\mu\) et \(\sigma\). On réalise ici encore que la probabilité a posteriori est proportionnelle au produit de la vraisemblance et du prior.

Distribution postérieure - Grid approximation

# on définit une grille de valeurs possibles pour mu et sigma
mu.list <- seq(from = 140, to = 160, length.out = 200)
sigma.list <- seq(from = 4, to = 9, length.out = 200)

# on étend la grille à toutes les combinaisons possibles de mu et sigma
post <- expand.grid(mu = mu.list, sigma = sigma.list)

# calcul de la log-vraisemblance (pour chaque combinaison de mu et sigma)
post$LL <-
  sapply(
    1:nrow(post),
    function(i) sum(dnorm(
      d2$height,
      mean = post$mu[i],
      sd = post$sigma[i],
      log = TRUE) )
    )

# calcul de la probabilité a posteriori (non normalisée)
post$prod <-
  post$LL +
  dnorm(x = post$mu, mean = 178, sd = 20, log = TRUE) +
  dunif(x = post$sigma, min = 0, max = 50, log = TRUE)

# on "annule" le log et on standardise par la valeur maximale (pour éviter les erreurs d'arrondi)
post$prob <- exp(post$prod - max(post$prod) )

Distribution postérieure - Grid approximation

# select random 20 rows of the dataframe 
post %>% slice_sample(n = 20, replace = FALSE)
         mu    sigma        LL      prod          prob
1  140.4020 8.949749 -1669.018 -1678.611 1.851262e-196
2  152.3618 8.824121 -1236.343 -1244.991  3.856066e-08
3  155.2764 7.065327 -1224.068 -1232.540  9.856972e-03
4  157.4874 6.939698 -1254.355 -1262.708  7.798220e-16
5  157.7889 6.386935 -1278.010 -1286.347  4.221437e-26
6  155.4774 5.055276 -1310.848 -1319.309  2.044278e-40
7  149.4472 4.025126 -1751.071 -1759.917 9.054090e-232
8  155.3769 6.185930 -1242.628 -1251.094  8.626726e-11
9  148.0402 4.075377 -1907.013 -1915.961 1.540404e-299
10 151.0553 8.698492 -1253.112 -1261.846  1.845524e-15
11 147.8392 5.909548 -1480.217 -1489.181 3.435830e-114
12 152.4623 8.095477 -1232.367 -1241.009  2.068862e-06
13 142.7136 4.075377 -2947.893 -2957.276  0.000000e+00
14 156.7839 8.221106 -1233.134 -1241.523  1.237383e-06
15 152.5628 8.045226 -1231.201 -1239.836  6.683351e-06
16 149.1457 4.075377 -1766.335 -1775.202 2.082933e-238
17 141.8090 6.236181 -1978.355 -1987.818  0.000000e+00
18 159.5980 4.603015 -1565.130 -1573.380 9.310976e-151
19 148.6432 6.939698 -1353.373 -1362.277  4.463307e-59
20 156.4824 5.005025 -1335.275 -1343.681  5.320236e-51

Distribution postérieure - Grid approximation

sample.rows <- sample(x = 1:nrow(post), size = 1e4, replace = TRUE, prob = post$prob)
sample.mu <- post$mu[sample.rows]
sample.sigma <- post$sigma[sample.rows]

Distribution postérieure - Distributions marginales

posterior_plot(samples = sample.mu, nbins = 30) + labs(x = expression(mu) )

Distribution postérieure - Distributions marginales

posterior_plot(samples = sample.sigma, nbins = 30) + labs(x = expression(sigma) )

Introduction à brms

Under the hood : Stan est un langage de programmation probabiliste écrit en C++, et qui implémente plusieurs algorithmes de MCMC : HMC, NUTS, L-BFGS…

data {
  int<lower=0> J; // number of schools 
  real y[J]; // estimated treatment effects
  real<lower=0> sigma[J]; // s.e. of effect estimates 
  }

parameters {
  real mu; 
  real<lower=0> tau;
  real eta[J];
  }

transformed parameters {
  real theta[J];
  for (j in 1:J)
    theta[j] = mu + tau * eta[j];
  }

model {
  target += normal_lpdf(eta | 0, 1);
  target += normal_lpdf(y | theta, sigma);
  }

Bayesian regression models using Stan

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Par exemple, le modèle suivant :

\[ \begin{align} y_{i} &\sim \mathrm{Normal}(\mu_{i}, \sigma) \\ \mu_{i} &= \alpha + \alpha_{\text{subject}[i]} + \alpha_{\text{item}[i]} + \beta x_{i} \\ \end{align} \]

se spécifie avec brms (comme avec lme4) de la manière suivante :

model <- brm(y ~ x + (1 | subject) + (1 | item), data = d, family = gaussian() )

Rappels de syntaxe

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme4.

Reaction ~ Days + (1 + Days | Subject)

La partie gauche représente notre variable dépendante (ou outcome, i.e., ce qu’on essaye de prédire). Le package brms permet également de fitter des modèles multivariés (plusieurs outcomes) en les combinant avec mvbind().

mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)

La partie droite permet de définir les prédicteurs. L’intercept est généralement implicite, de sorte que les deux écritures ci-dessous sont équivalentes.

mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)
mvbind(Reaction, Memory) ~ 1 + Days + (1 + Days | Subject)

Rappels de syntaxe

Si l’on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

mvbind(Reaction, Memory) ~ 0 + Days + (1 + Days | Subject)

Par défaut brms postule une vraisemblance gaussienne. Ce postulat peut être changé facilement en spécifiant la vraisemblance souhaitée via l’argument family.

brm(Reaction ~ 1 + Days + (1 + Days | Subject), family = lognormal() )

Lisez la documentation (c’est très enthousiasmant à lire) accessible via ?brm.

Quelques fonctions utiles

# générer le code du modèle en Stan
make_stancode(formula, ...)
stancode(fit)

# définir les priors
get_prior(formula, ...)
set_prior(prior, ...)

# récupérer les prédictions du modèle
fitted(fit, ...)
predict(fit, ...)
conditional_effects(fit, ...)

# posterior predictive checking
pp_check(fit, ...)

# comparaison de modèles
loo(fit1, fit2, ...)
bayes_factor(fit1, fit2, ...)
model_weights(fit1, fit2, ...)

# test d'hypothèse
hypothesis(fit, hypothesis, ...)

Un premier exemple

library(brms)
mod1 <- brm(height ~ 1, data = d2)
posterior_summary(mod1, pars = c("^b_", "sigma"), probs = c(0.025, 0.975) )
              Estimate Est.Error       Q2.5      Q97.5
b_Intercept 154.591780 0.4212333 153.753327 155.420404
sigma         7.762537 0.2969947   7.205733   8.353429

Ces données représentent les distributions marginales de chaque paramètre. En d’autres termes, la probabilité de chaque valeur de \(\mu\), moyennée sur toutes les valeurs possible de \(\sigma\), est décrite par une distribution gaussienne avec une moyenne de \(154.6\) et un écart type de \(0.42\). L’intervalle de crédibilité (\(\neq\) intervalle de confiance) nous indique les 95% valeurs de \(\mu\) ou \(\sigma\) les plus probables (sachant les données et les priors).

En utilisant notre prior

Par défaut brms utilise un prior très peu informatif centré sur la valeur moyenne de la variable mesurée. On peut donc affiner l’estimation réalisée par ce modèle en utilisant nos connaissances sur la distribution habituelle des tailles chez les humains.

La fonction get_prior() permet de visualiser une liste des priors par défaut ainsi que de tous les priors qu’on peut spécifier, sachant une certaine formule (i.e., une manière d’écrire notre modèle) et un jeu de données.

get_prior(height ~ 1, data = d2)
                    prior     class coef group resp dpar nlpar lb ub  source
 student_t(3, 154.3, 8.5) Intercept                                  default
     student_t(3, 0, 8.5)     sigma                             0    default

En utilisant notre prior

priors <- c(
  prior(normal(178, 20), class = Intercept),
  prior(exponential(0.01), class = sigma)
  )

mod2 <- brm(
  height ~ 1,
  prior = priors,
  family = gaussian(),
  data = d2
  )

En utilisant notre prior

summary(mod2)
 Family: gaussian 
  Links: mu = identity; sigma = identity 
Formula: height ~ 1 
   Data: d2 (Number of observations: 352) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept   154.62      0.42   153.79   155.43 1.00     3339     2429

Family Specific Parameters: 
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma     7.77      0.30     7.19     8.37 1.00     3810     2544

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

En utilisant un prior plus informatif

priors <- c(
  prior(normal(178, 0.1), class = Intercept),
  prior(exponential(0.01), class = sigma)
  )

mod3 <- brm(
  height ~ 1,
  prior = priors,
  family = gaussian(),
  data = d2
  )

En utilisant un prior plus informatif

summary(mod3)
 Family: gaussian 
  Links: mu = identity; sigma = identity 
Formula: height ~ 1 
   Data: d2 (Number of observations: 352) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept   177.87      0.10   177.67   178.06 1.00     4270     2641

Family Specific Parameters: 
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma    24.64      0.92    22.88    26.51 1.00     3696     2687

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

On remarque que la valeur estimée pour \(\mu\) n’a presque pas “bougée” du prior…mais on remarque également que la valeur estimée pour \(\sigma\) a largement augmentée. Nous avons dit au modèle que nous étions assez certain de notre valeur de \(\mu\), le modèle s’est ensuite “adapté”, ce qui explique la valeur de \(\sigma\)

Précision du prior (heuristique)

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

On sait que le \(\sigma\) d’un posterior gaussien nous est donné par la formule :

\[\sigma_{\text{post}} = 1\ /\ \sqrt{n}\]

Qui implique une quantité de données \(n = 1\ /\ \sigma^2_{\text{post}}\). Notre prior avait un \(\sigma = 0.1\), ce qui donne \(n = 1\ /\ 0.1^2 = 100\).

On peut donc considérer que le prior \(\mu \sim \mathrm{Normal}(178, 0.1)\) est équivalent au cas dans lequel nous aurions observé \(100\) tailles de moyenne \(178\).

Visualiser les échantillons de la distribution postérieure

post <- as_draws_df(x = mod2) %>%
    mutate(density = get_density(b_Intercept, sigma, n = 1e2) )

ggplot(post, aes(x = b_Intercept, y = sigma, color = density) ) +
    geom_point(size = 2, alpha = 0.5, show.legend = FALSE) +
    labs(x = expression(mu), y = expression(sigma) ) +
    viridis::scale_color_viridis()

Récupérer les échantillons de la distribution postérieure

# gets the first 6 samples
head(post)
# A draws_df: 6 iterations, 1 chains, and 5 variables
  b_Intercept sigma lprior  lp__ density
1         155   7.8   -9.3 -1227    0.85
2         154   7.7   -9.3 -1227    0.80
3         154   7.4   -9.3 -1228    0.20
4         155   7.7   -9.3 -1227    1.19
5         154   7.7   -9.3 -1227    1.10
6         155   7.4   -9.3 -1228    0.52
# ... hidden reserved variables {'.chain', '.iteration', '.draw'}
# gets the median and the 95% credible interval
t(sapply(post[, 1:2], quantile, probs = c(0.025, 0.5, 0.975) ) )
                  2.5%        50%     97.5%
b_Intercept 153.790176 154.620248 155.42834
sigma         7.189477   7.758445   8.36522

Visualiser la distribution postérieure

H.scv <- Hscv(post[, 1:2])
fhat_post <- kde(x = post[, 1:2], H = H.scv, compute.cont = TRUE)

plot(fhat_post, display = "persp", col = "purple", border = NA,
  xlab = "\nmu", ylab = "\nsigma", zlab = "\np(mu, sigma)",
  shade = 0.8, phi = 30, ticktype = "detailed",
  cex.lab = 1.2, family = "Helvetica")

Visualiser la distribution postérieure

Ajouter un prédicteur

Comment est-ce que la taille co-varie avec le poids ?

d2 %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8)

Régression linéaire à un prédicteur continu

\[ \begin{align} h_{i} &\sim \mathrm{Normal}(\mu_{i}, \sigma) \\ \mu_{i} &= \alpha + \beta x_{i} \\ \end{align} \]

linear_model <- lm(height ~ weight, data = d2)
rethinking::precis(linear_model, prob = 0.95)
                   mean         sd        2.5%       97.5%
(Intercept) 113.8793936 1.91106523 110.1337746 117.6250126
weight        0.9050291 0.04204752   0.8226175   0.9874407

Différentes notations

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

\[ h_{i} = \alpha + \beta x_{i} + \epsilon_{i} \quad \text{avec} \quad \epsilon_{i} \sim \mathrm{Normal}(0, \sigma) \]

est équivalente à :

\[ h_{i} - (\alpha + \beta x_{i}) \sim \mathrm{Normal}(0, \sigma) \]

et si on réduit encore un peu :

\[ h_{i} \sim \mathrm{Normal}(\alpha + \beta x_{i}, \sigma). \]

Les notations ci-dessus sont équivalentes, mais la dernière est plus flexible, et nous permettra par la suite de l’étendre plus simplement aux modèles multi-niveaux.

Régression linéaire à un prédicteur continu

\[ \begin{aligned} \color{orangered}{h_{i}} \ &\color{orangered}{\sim \mathrm{Normal}(\mu_{i},\sigma)} \\ \color{black}{\mu_{i}} \ &\color{black}{= \alpha + \beta x_{i}} \\ \color{steelblue}{\alpha} \ &\color{steelblue}{\sim \mathrm{Normal}(178, 20)} \\ \color{steelblue}{\beta} \ &\color{steelblue}{\sim \mathrm{Normal}(0, 10)} \\ \color{steelblue}{\sigma} \ &\color{steelblue}{\sim \mathrm{Exponential}(0.01)} \\ \end{aligned} \]

Dans ce modèle \(\mu\) n’est plus un paramètre à estimer (car \(\mu\) est déterminé par \(\alpha\) et \(\beta\)). À la place, nous allons estimer \(\alpha\) et \(\beta\).

Rappels : \(\alpha\) est l’intercept, c’est à dire la taille attendue, lorsque le poids est égal à \(0\). \(\beta\) est la pente, c’est à dire le changement de taille attendu quand le poids augmente d’une unité.

Régression linéaire à un prédicteur continu

priors <- c(
  prior(normal(178, 20), class = Intercept),
  prior(normal(0, 10), class = b),
  prior(exponential(0.01), class = sigma)
  )

mod4 <- brm(
  height ~ 1 + weight,
  prior = priors,
  family = gaussian(),
  data = d2
  )

Régression linéaire à un prédicteur continu

posterior_summary(mod4)
                 Estimate  Est.Error          Q2.5         Q97.5
b_Intercept   113.8890577 1.85606722   110.1498814   117.5807237
b_weight        0.9049617 0.04089134     0.8237468     0.9871104
sigma           5.0997347 0.19666803     4.7455662     5.5033403
lprior        -12.4807870 0.01575025   -12.5121078   -12.4498495
lp__        -1083.3414224 1.20407429 -1086.5553601 -1081.9651776
  • \(\alpha = 113.89, 95\% \ \text{CrI} \ [110.15, 117.58]\) représente la taille moyenne quand le poids est égal à 0kg…

  • \(\beta = 0.90, 95\% \ \text{CrI} \ [0.82, 0.99]\) nous indique qu’une augmentation de 1kg entraîne une augmentation de 0.90cm.

Régression linéaire à un prédicteur continu

d2$weight.c <- d2$weight - mean(d2$weight)

mod5 <- brm(
  height ~ 1 + weight.c,
  prior = priors,
  family = gaussian(),
  data = d2
  )
fixef(mod5) # retrieves the fixed effects estimates
             Estimate Est.Error        Q2.5       Q97.5
Intercept 154.6031253 0.2737608 154.0670147 155.1436516
weight.c    0.9063922 0.0419498   0.8264103   0.9903136

Après avoir centré la réponse, l’intercept représente désormais la valeur attendue de taille (en cm) lorsque le poids est à sa valeur moyenne.

Représenter les prédictions du modèle

d2 %>%
    ggplot(aes(x = weight, y = height) ) +
    geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
    geom_abline(intercept = fixef(mod4)[1], slope = fixef(mod4)[2], lwd = 1)

Représenter l’incertitude sur \(\mu\) via fitted()

# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 25, to = 70, by = 1) )

# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(fitted(mod4, newdata = weight.seq) ) %>% bind_cols(weight.seq)

# on affiche les 10 premières lignes de mu
head(mu, 10)
   Estimate Est.Error     Q2.5    Q97.5 weight
1  136.5131 0.8572681 134.7868 138.2284     25
2  137.4181 0.8185231 135.7703 139.0651     26
3  138.3230 0.7799974 136.7587 139.8900     27
4  139.2280 0.7417249 137.7519 140.7220     28
5  140.1329 0.7037471 138.7301 141.5440     29
6  141.0379 0.6661144 139.7110 142.3806     30
7  141.9429 0.6288887 140.6854 143.2139     31
8  142.8478 0.5921467 141.6684 144.0537     32
9  143.7528 0.5559845 142.6534 144.8882     33
10 144.6578 0.5205227 143.6219 145.7115     34

Représenter l’incertitude sur \(\mu\) via fitted()

d2 %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  geom_smooth(
    data = mu, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
    stat = "identity",
    color = "black", alpha = 0.8, size = 1
    )

Intervalles de prédiction (incorporer \(\sigma\))

Pour rappel, voici notre modèle : \(h_{i} \sim \mathrm{Normal}(\alpha + \beta x_{i}, \sigma)\). Pour l’instant, on a seulement représenté les prédictions pour \(\mu\). Comment incorporer \(\sigma\) dans nos prédictions ?

# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 25, to = 70, by = 1) )

# on récupère les prédictions du modèle pour ces valeurs de poids
pred_height <- data.frame(predict(mod4, newdata = weight.seq) ) %>% bind_cols(weight.seq)

# on affiche les 10 premières lignes de pred_height
head(pred_height, 10)
   Estimate Est.Error     Q2.5    Q97.5 weight
1  136.4098  5.186568 126.4272 146.6054     25
2  137.3522  5.269245 127.3612 147.7474     26
3  138.2561  5.219190 128.3187 148.4856     27
4  139.3065  5.225907 128.9418 149.3919     28
5  140.1270  5.172048 130.1793 149.8614     29
6  141.0888  5.159174 131.1203 151.1209     30
7  141.8411  5.200899 131.7751 152.0549     31
8  142.8074  5.175875 132.6406 153.0057     32
9  143.8191  5.132382 133.4520 153.8159     33
10 144.6263  5.051845 134.6868 154.4553     34

Intervalles de prédiction (incorporer \(\sigma\))

d2 %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  geom_ribbon(
    data = pred_height, aes(x = weight, ymin = Q2.5, ymax = Q97.5),
    alpha = 0.2, inherit.aes = FALSE
    ) +
  geom_smooth(
    data = mu, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
    stat = "identity", color = "black", alpha = 0.8, size = 1
    )

Built-in brms functions

Le paquet brms propose aussi les fonctions posterior_epred(), posterior_linpred(), et posterior_predict(), qui permettent de générer des prédictions à partir de modèles fittés avc brms. Andrew Heiss décrit de manière détaillée le fonctionnement de ces fonction dans cet article de blog.

Rappel : Deux types d’incertitude

Deux sources d’incertitude dans le modèle : incertitude concernant l’estimation de la valeur des paramètres mais également concernant le processus d’échantillonnage.

Incertitude épistémique : La distribution a posteriori ordonne toutes les combinaisons possibles des valeurs des paramètres selon leurs plausibilités relatives.

Incertitude aléatoire : La distribution des données simulées est elle, une distribution qui contient de l’incertitude liée à un processus d’échantillonnage (i.e., générer des données à partir d’une gaussienne).

Voir aussi ce court article par O’Hagan (2004).

Régression polynomiale

d %>% # on utilise d au lieu de d2
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8)

Scores standardisés

d <- d %>% mutate(weight.s = (weight - mean(weight) ) / sd(weight) )

d %>%
    ggplot(aes(x = weight.s, y = height) ) +
    geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8)
c(mean(d$weight.s), sd(d$weight.s) )
[1] -2.712698e-18  1.000000e+00

Scores standardisés

Pourquoi standardiser les prédicteurs ?

  • Interprétation. Permet de comparer les coefficients de plusieurs prédicteurs. Un changement d’un écart-type du prédicteur correspond à un changement d’un écart-type sur la réponse (si la réponse est aussi standardisée).

  • Fitting. Quand les prédicteurs contiennent de grandes valeurs (ou des valeurs trop différentes les unes des autres), cela peut poser des problèmes de convergence (cf. Cours n°05).

Modèle de régression polynomiale - Exercice

\[ \begin{aligned} \color{orangered}{h_{i}} \ &\color{orangered}{\sim \mathrm{Normal}(\mu_{i}, \sigma)} \\ \color{black}{\mu_{i}} \ &\color{black}{= \alpha + \beta_{1} x_{i} + \beta_{2} x_{i}^{2}} \\ \color{steelblue}{\alpha} \ &\color{steelblue}{\sim \mathrm{Normal}(156, 100)} \\ \color{steelblue}{\beta_{1}, \beta_{2}} \ &\color{steelblue}{\sim \mathrm{Normal}(0, 10)} \\ \color{steelblue}{\sigma} \ &\color{steelblue}{\sim \mathrm{Exponential}(0.01)} \\ \end{aligned} \]

À vous de construire et fitter ce modèle en utilisant brms::brm().

Modèle de régression polynomiale

priors <- c(
  prior(normal(156, 100), class = Intercept),
  prior(normal(0, 10), class = b),
  prior(exponential(0.01), class = sigma)
  )

mod6 <- brm(
  # NB: polynomials should be written with the I() function...
  height ~ 1 + weight.s + I(weight.s^2),
  prior = priors,
  family = gaussian(),
  data = d
  )

Modèle de régression polynomiale

summary(mod6)
 Family: gaussian 
  Links: mu = identity; sigma = identity 
Formula: height ~ 1 + weight.s + I(weight.s^2) 
   Data: d (Number of observations: 544) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept     146.67      0.37   145.92   147.38 1.00     3849     2603
weight.s       21.40      0.29    20.85    21.97 1.00     3830     2853
Iweight.sE2    -8.41      0.28    -8.96    -7.85 1.00     3652     2763

Family Specific Parameters: 
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma     5.78      0.18     5.45     6.14 1.00     3838     2518

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Représenter les prédictions du modèle

# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight.s = seq(from = -2.5, to = 2.5, length.out = 50) )

# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(fitted(mod6, newdata = weight.seq) ) %>% bind_cols(weight.seq)
pred_height <- data.frame(predict(mod6, newdata = weight.seq) ) %>% bind_cols(weight.seq)

# on affiche les 10 premières lignes de pred_height
head(pred_height, 10)
   Estimate Est.Error     Q2.5     Q97.5  weight.s
1  40.57892  5.780568 29.22709  51.73450 -2.500000
2  46.93764  5.888279 35.50626  58.64793 -2.397959
3  53.19076  5.773016 41.89905  64.46848 -2.295918
4  59.19972  5.999697 47.83277  71.07507 -2.193878
5  65.25943  5.839142 53.87375  76.51191 -2.091837
6  70.79875  5.846949 59.36606  81.99090 -1.989796
7  76.30174  5.809967 64.98177  87.42384 -1.887755
8  81.63006  5.810998 70.14310  92.92906 -1.785714
9  86.69686  5.725256 75.74265  98.34396 -1.683673
10 91.86560  5.698405 80.90886 103.08358 -1.581633

Représenter les prédictions du modèle

d %>%
  ggplot(aes(x = weight.s, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  geom_ribbon(
    data = pred_height, aes(x = weight.s, ymin = Q2.5, ymax = Q97.5),
    alpha = 0.2, inherit.aes = FALSE
    ) +
  geom_smooth(
    data = mu, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
    stat = "identity", color = "black", alpha = 0.8, size = 1
    )

Modèle de régression, taille d’effet

Plusieurs méthodes pour calculer les tailles d’effet dans les modèles bayésiens. Gelman & Pardoe (2006) proposent une méthode pour calculer un \(R^{2}\) basé sur l’échantillon.

Marsman & Wagenmakers (2017) et Marsman et al. (2019) généralisent des méthodes existantes pour calculer un \(\rho^{2}\) pour les designs de type ANOVA (i.e., avec prédicteurs catégoriels), qui représente une estimation de la taille d’effet dans la population (et non basée sur l’échantillon).

Similar to most of the ES measures that have been proposed for the ANOVA model, the squared multiple correlation coefficient \(\rho^{2}\) […] is a so-called proportional reduction in error measure (PRE). In general, a PRE measure expresses the proportion of the variance in an outcome \(y\) that is attributed to the independent variables \(x\) (Marsman et al., 2019).

Modèle de régression, taille d’effet

\[ \begin{aligned} \rho^{2} &= \dfrac{\sum_{i = 1}^{n} \pi_{i}(\beta_{i} - \beta)^{2}}{\sigma^{2} + \sum_{i=1}^{n} \pi_{i}(\beta_{i} - \beta)^{2}} \\ \rho^{2} &= \dfrac{ \frac{1}{n} \sum_{i=1}^{n} \beta_{i}^{2}}{\sigma^{2} + \frac{1}{n} \sum_{i = 1}^{n} \beta_{i}^{2}} \\ \rho^{2} &= \dfrac{\beta^{2} \tau^{2}}{\sigma^{2} + \beta^{2} \tau^{2}}\\ \end{aligned} \]

post <- as_draws_df(x = mod4)
beta <- post$b_weight
sigma <- post$sigma
rho <- beta^2 * var(d2$weight) / (sigma^2 + beta^2 * var(d2$weight) )

Attention, si plusieurs prédicteurs, dépend de la structure de covariance…

Modèle de régression, taille d’effet

posterior_plot(samples = rho, usemode = TRUE) + labs(x = expression(rho) )
summary(lm(height ~ weight, data = d2) )$r.squared
[1] 0.5696444

Modèle de régression, taille d’effet

bayes_R2(mod4)
   Estimate  Est.Error      Q2.5     Q97.5
R2 0.568312 0.02230833 0.5203817 0.6090215
bayes_R2(mod4, summary = FALSE)[, 1] %>%
    posterior_plot(usemode = TRUE) +
    labs(x = expression(rho) )

Résumé du cours

On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

Comme précédemment, le théorème de Bayes est utilisé pour mettre à jour nos connaissances a priori quant à la valeur des paramètres en une connaissance a posteriori, synthèse entre nos priors et l’information contenue dans les données.

La package brms permet de fitter toutes sortes de modèles avec une syntaxe similaire à celle utilisée par lm().

La fonction fitted() permet de récupérer les prédictions d’un modèle fitté avec brms.

La fonction predict() permet de simuler des données à partir d’un modèle fitté avec brms.

Travaux pratiques - 1/2

Sélectionner toutes les lignes du jeu de données howell correspondant à des individus mineurs (age < 18). Cela devrait résulter en une dataframe de 192 lignes.

Fitter un modèle de régression linéaire en utilisant la fonction brms::brm(). Reporter et interpréter les estimations de ce modèle. Pour une augmentation de 10 unités de weight, quelle augmentation de taille (height) le modèle prédit-il ?

Faire un plot des données brutes avec le poids sur l’axe des abscisses et la taille sur l’axe des ordonnées. Surimposer la droite de régression du modèle et un intervalle de crédibilité à 89% pour la moyenne. Ajouter un intervalle de crédibilité à 89% pour les tailles prédites.

Que pensez-vous du “fit” du modèle ? Quelles conditions d’application du modèle seriez-vous prêt.e.s à changer, afin d’améliorer le modèle ?

Travaux pratiques - 2/2

Imaginons que vous ayez consulté une collègue experte en allométrie (i.e., les phénomènes de croissance différentielle d’organes) et que cette dernière vous explique que ça ne fait aucun sens de modéliser la relation entre le poids et la taille… alors qu’on sait que c’est le logarithme du poids qui est relié (linéairement) à la taille !

Modéliser alors la relation entre la taille (cm) et le log du poids (log-kg). Utiliser la dataframe howell en entier (les 544 lignes). Fitter le modèle suivant en utilisant brms::brm().

\[ \begin{align*} &\color{orangered}{h_{i} \sim \mathrm{Normal}(\mu_{i}, \sigma)} \\ &\mu_{i}= \alpha + \beta \cdot \log (w_{i}) \\ &\color{steelblue}{\alpha \sim \mathrm{Normal}(178, 100)} \\ &\color{steelblue}{\beta \sim \mathrm{Normal}(0, 100)} \\ &\color{steelblue}{\sigma \sim \mathrm{Exponential}(0.01)} \\ \end{align*} \]

\(h_{i}\) est la taille de l’individu \(i\) et \(w_{i}\) le poids de l’individu \(i\). La fonction pour calculer le log en R est simplement log(). Est-ce que vous savez interpréter les résultats ? Indice : faire un plot des données brutes et surimposer les prédictions du modèle…

Proposition de solution

# on garde seulement les individus ayant moins de 18 ans
d <- open_data(howell) %>% filter(age < 18)

priors <- c(
  prior(normal(150, 100), class = Intercept),
  prior(normal(0, 10), class = b),
  prior(exponential(0.01), class = sigma)
  )

mod7 <- brm(
  height ~ 1 + weight,
  prior = priors,
  family = gaussian(),
  data = d
  )

Proposition de solution

summary(mod7, prob = 0.89)
 Family: gaussian 
  Links: mu = identity; sigma = identity 
Formula: height ~ 1 + weight 
   Data: d (Number of observations: 192) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
          Estimate Est.Error l-89% CI u-89% CI Rhat Bulk_ESS Tail_ESS
Intercept    58.20      1.40    55.92    60.47 1.00     4066     3128
weight        2.72      0.07     2.61     2.83 1.00     3954     2910

Family Specific Parameters: 
      Estimate Est.Error l-89% CI u-89% CI Rhat Bulk_ESS Tail_ESS
sigma     8.53      0.45     7.83     9.27 1.00     3781     2772

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Représenter les prédictions du modèle

# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 5, to = 45, length.out = 1e2) )

# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(
  fitted(mod7, newdata = weight.seq, probs = c(0.055, 0.945) )
  ) %>%
  bind_cols(weight.seq)

pred_height <- data.frame(
  predict(mod7, newdata = weight.seq, probs = c(0.055, 0.945) )
  ) %>%
  bind_cols(weight.seq)

# on affiche les 6 premières lignes de pred_height
head(pred_height)
  Estimate Est.Error     Q5.5    Q94.5   weight
1 71.66877  8.423002 58.55938 85.12889 5.000000
2 73.08458  8.607555 59.45684 86.61345 5.404040
3 73.74920  8.534452 60.15777 87.46164 5.808081
4 75.09736  8.569803 61.52997 88.58663 6.212121
5 76.33358  8.573160 62.58027 89.77716 6.616162
6 77.32169  8.525510 63.42130 91.10404 7.020202

Représenter les prédictions du modèle

d %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  geom_ribbon(
    data = pred_height, aes(x = weight, ymin = Q5.5, ymax = Q94.5),
    alpha = 0.2, inherit.aes = FALSE
    ) +
  geom_smooth(
    data = mu, aes(y = Estimate, ymin = Q5.5, ymax = Q94.5),
    stat = "identity", color = "black", alpha = 0.8, size = 1
    )

Proposition de solution

# on considère maintenant tous les individus
d <- open_data(howell)

mod8 <- brm(
  # on prédit la taille par le logarithme du poids
  height ~ 1 + log(weight),
  prior = priors,
  family = gaussian(),
  data = d
  )

Proposition de solution

summary(mod8, prob = 0.89)
 Family: gaussian 
  Links: mu = identity; sigma = identity 
Formula: height ~ 1 + log(weight) 
   Data: d (Number of observations: 544) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
          Estimate Est.Error l-89% CI u-89% CI Rhat Bulk_ESS Tail_ESS
Intercept   -23.58      1.34   -25.80   -21.45 1.00     3743     2855
logweight    47.02      0.39    46.40    47.65 1.00     3709     2819

Family Specific Parameters: 
      Estimate Est.Error l-89% CI u-89% CI Rhat Bulk_ESS Tail_ESS
sigma     5.16      0.16     4.92     5.42 1.00     3780     2869

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Représenter les prédictions du modèle

# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 5, to = 65, length.out = 1e2) )

# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(
  fitted(mod8, newdata = weight.seq, probs = c(0.055, 0.945) )
  ) %>%
  bind_cols(weight.seq)

pred_height <- data.frame(
  predict(mod8, newdata = weight.seq, probs = c(0.055, 0.945) )
  ) %>%
  bind_cols(weight.seq)

# on affiche les 6 premières lignes de pred_height
head(pred_height)
  Estimate Est.Error     Q5.5    Q94.5   weight
1 52.02360  5.320630 43.55784 60.56774 5.000000
2 57.53741  5.100738 49.31835 65.68519 5.606061
3 62.47234  5.196777 54.19279 70.69335 6.212121
4 66.74357  5.256288 58.36315 74.89908 6.818182
5 70.61061  5.189019 62.46373 78.88959 7.424242
6 74.32148  5.123331 66.33714 82.59116 8.030303

Représenter les prédictions du modèle

d %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  geom_ribbon(
    data = pred_height, aes(x = weight, ymin = Q5.5, ymax = Q94.5),
    alpha = 0.2, inherit.aes = FALSE
    ) +
  geom_smooth(
    data = mu, aes(y = Estimate, ymin = Q5.5, ymax = Q94.5),
    stat = "identity", color = "black", alpha = 0.8, size = 1
    )

Références

Bürkner, P.-C. (2017). brms : An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01
Gelman, A., & Pardoe, I. (2006). Bayesian measures of explained variance and pooling in multilevel (hierarchical) models. Technometrics, 48(2), 241–251. https://doi.org/10.1198/004017005000000517
Marsman, M., & Wagenmakers, E.-J. (2017). Three Insights from a Bayesian Interpretation of the One-Sided P Value. Educational and Psychological Measurement, 77(3), 529–539. https://doi.org/10.1177/0013164416669201
Marsman, M., Waldorp, L., Dablander, F., & Wagenmakers, E.-J. (2019). Bayesian estimation of explained variance in ANOVA designs. Statistica Neerlandica, 0(0), 1–22. https://doi.org/10.1111/stan.12173
O’Hagan, T. (2004). Dicing with the unknown. Significance, 1(3), 132–133. https://doi.org/10.1111/j.1740-9713.2004.00050.x