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Préface 👋 👋
Ce cours est grandement inspiré des livres suivants :

McElreath, R. (2016, 2020). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC
Press.

Kurz, S. (2019). Statistical Rethinking with brms, ggplot2, and the tidyverse. Available .

Kruschke, J. K. (2015). Doing Bayesian Data Analysis, Second Edition: A Tutorial with R, JAGS, and Stan.
Academic Press / Elsevier.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data
Analysis, third edition. London: CRC Press.

Lambert, B. (2018). A Student’s Guide to Bayesian Statistics. SAGE Publications Ltd.

Noël, Y. (2015). Psychologie Statistique. EDP Sciences.

Nicenboim, B., Schad, D., & Vasishth, S. (2021). An Introduction to Bayesian Data Analysis for Cognitive
Science. Available .

Le code et les slides seront disponibles juste avant chaque séance sur le site de la formation :
.

online

online

https://lnalborczyk.github.io/IMSB2026/
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https://bookdown.org/ajkurz/Statistical_Rethinking_recoded/
https://vasishth.github.io/bayescogsci/book/
https://lnalborczyk.github.io/IMSB2026/


Objectifs
Objectifs généraux :

Comprendre les concepts fondamentaux de la statistique bayésienne.

Être capable de comprendre des articles décrivant des analyses bayésiennes.

Bonus : Réaliser que l’approche bayésienne est plus intuitive que l’approche fréquentiste.

Objectifs pratiques :

Être capable de réaliser une analyse complète (i.e., identification du modèle approprié, écriture du
modèle mathématique, implémentation en R, interprétation et report des résultats) d’un jeu de
données simple.
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Planning
Cours n°01 : Introduction à l’inférence bayésienne
Cours n°02 : Modèle Beta-Binomial
Cours n°03 : Introduction à brms, modèle de régression linéaire
Cours n°04 : Modèle de régression linéaire (suite)
Cours n°05 : Markov Chain Monte Carlo
Cours n°06 : Modèle linéaire généralisé
Cours n°07 : Comparaison de modèles
Cours n°08 : Modèles multi-niveaux (généralisés)
Cours n°09 : Examen final
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Interprétations probabilistes
Quelle est la probabilité…

D’obtenir un chiffre pair sur un lancer de dé ?

Que j’apprenne quelque chose pendant cette formation ?

Est-ce qu’il s’agit, pour chaque exemple, de la même sorte de probabilité ?
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Interprétation classique (ou théorique)

Pr(pair) = = =
nombre de cas favorables
nombre de cas possibles

3
6

1
2

Problème : cette définition est uniquement applicable aux situations dans lesquelles il n’y a qu’un
nombre fini de résultats possibles équiprobables…

Par exemple, quelle est la probabilité qu’il pleuve demain ?

Pr(pluie) = =pluie
{pluie, non-pluie}

1
2
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Interprétation fréquentiste (ou empirique)

Où  est le nombre d’occurrences de l’évènement  et  le nombre total d’essais. L’interprétation
fréquentiste postule que, à long-terme (i.e., quand le nombre d’essais s’approche de l’infini), la fréquence
relative va converger exactement vers ce qu’on appelle “probabilité”.

Pr(𝑥) = lim
→∞𝑛𝑡

𝑛𝑥

𝑛𝑡

𝑛𝑥 𝑥 𝑛𝑡

Conséquence : le concept de probabilité s’applique uniquement à des ensembles d’évènements, et non
à des évènements individuels.
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Interprétation fréquentiste (ou empirique)
library(tidyverse)1

2
sample(x = c(0, 1), size = 500, prob = c(0.5, 0.5), replace = TRUE) %>%3
        data.frame() %>%4
        mutate(x = seq_along(.), y = cummean(.) ) %>%5
        ggplot(aes(x = x, y = y) ) +6
        geom_line(lwd = 1) +7
        geom_hline(yintercept = 0.5, lty = 3) +8
        labs(x = "Nombre de lancers", y = "Proportion de faces") +9
        ylim(0, 1)10
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Limites de l’interprétation fréquentiste…
Quelle classe de référence ? Quelle est la probabilité que je vive jusqu’à 80 ans ? En tant qu’homme ? En
tant que Français ?

Quid des évènements qui ne peuvent pas se répéter ? Quelle est la probabilité que j’apprenne quelque
chose pendant cette formation ?

À partir de combien de lancers (d’une pièce par exemple) a-t-on une bonne approximation de la
probabilité ? Une classe finie d’évènements de taille  ne peut produire que des fréquences relatives de
précision …

𝑛
1/𝑛
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Interprétation propensionniste
Les propriétés fréquentistes (i.e., à long terme) des objets (e.g., une pièce) seraient provoquées par des
propriétés physiques intrinsèques aux objets. Par exemple, une pièce biaisée va engendrer une
fréquence relative (et donc une probabilité) biaisée en raison de ses propriétés physiques. Pour les
propensionnistes, les probabilités représentent ces caractéristiques intrinsèques, ces propensions à
générer certaines fréquences relatives, et non les fréquences relatives en elles-mêmes.

Conséquence : ces propriétés sont les propriétés d’évènements individuels… et non de séquences !
L’interprétation propensionniste nous permet donc de parler de la probabilité d’évènements uniques.
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Interprétation logique

Il y a 10 étudiants dans cette salle
9 portent un t-shirt vert
1 porte un t-shirt rouge

Une personne est tirée au sort…

Conclusion n°1 : l’étudiant tiré au sort porte un t-shirt ✔

Conclusion n°2 : l’étudiant tiré au sort porte un t-shirt vert ✗

Conclusion n°3 : l’étudiant tiré au sort porte un t-shirt rouge ✗
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Interprétation logique
L’interprétation logique du concept de probabilité essaye de généraliser la logique (vrai / faux) au monde
probabiliste. La probabilité représente donc le degré de support logique qu’une conclusion peut avoir,
relativement à un ensemble de prémisses ( ; ).Carnap, 1971 Keynes, 1921

Conséquence : toute probabilité est conditionnelle.
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Interprétation bayésienne
La probabilité est une mesure du degré d’incertitude. Un évènement certain aura donc une probabilité
de 1 et un évènement impossible une probabilité de 0.

So to assign equal probabilities to two events is not in any way an assertion that they must
occur equally often in any random experiment […], it is only a formal way of saying I don’t
know ( ).

“
Jaynes, 1986

Pour parler de probabilités, dans ce cadre, nous n’avons plus besoin de nous référer à la limite
d’occurrence d’un évènement (fréquence).
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Interprétations probabilistes
Interprétation classique (Laplace, Bernouilli, Leibniz)

Interprétation fréquentiste (Venn, Reichenbach, von Mises)

Interprétation propensionniste (Popper, Miller)

Interprétation logique (Keynes, Carnap)

Interprétation bayésienne (Jeffreys, de Finetti, Savage)

Voir plus de détails sur la Stanford Encyclopedia of Philosophy.
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Interprétations probabilistes - résumé

Probabilité épistémique

Toute probabilité est conditionnelle à de
l’information disponible (e.g., prémisses ou

données). La probabilité est utilisée comme moyen
de quantifier l’incertitude.

Interprétation logique, bayésienne.

Probabilité physique

Les probabilités dépendent d’un état du monde, de
caractéristiques physiques, elles sont

indépendantes de l’information disponible (ou de
l’incertitude).

Interprétation classique, fréquentiste.
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Axiomes des probabilités ( )
Une probabilité est une valeur numérique assignée à un évènement , compris comme une possibilité
appartenant à l’univers  (l’ensemble de toutes les issues possibles).

Kolmogorov, 1933
𝐴

Ω

Les probabilités se conforment aux axiomes suivants :

Non-négativité : 

Normalisation : 

Additivité (pour des évènements incompatibles) : 

Pr(𝐴) ≥ 0
Pr(Ω) = 1

Pr( ∪ ) = Pr( ) + Pr( )𝐴1 𝐴2 𝐴1 𝐴2

Le dernier axiome est également connu comme la règle de la somme, et peut se généraliser à des
évènements non mutuellement exclusifs : .Pr( ∪ ) = Pr( ) + Pr( ) − Pr( ∩ )𝐴1 𝐴2 𝐴1 𝐴2 𝐴1 𝐴2
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Règle de la somme et règle du produit
Règle de la somme (pour deux évènements mutuellement exclusifs) :

.

Pensez à la probabilité d’obtenir un nombre impair lors d’un lancer de dé. Nous pouvons l’écrire sous la
forme .

Pr( ∪ ) = Pr( ) + Pr( ) − Pr( ∩ )𝐴1 𝐴2 𝐴1 𝐴2 𝐴1 𝐴2

Pr(𝑥 = 1) + Pr(𝑥 = 3) + Pr(𝑥 = 5) = 3
6

Règle du produit (pour deux évènements indépendants) : .

Pensez à la probabilité d’obtenir deux 6 consécutifs lors de deux lancers de dé. On peut l’écrire sous la
forme .

Pr( ∩ ) = Pr( ) × Pr( )𝐴1 𝐴2 𝐴1 𝐴2

Pr(𝑥 = 6, 𝑦 = 6) = × =1
6

1
6

1
36

Si vous comprenez et retenez ces deux règles, vous maîtrisez déjà la statistique bayésienne !
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Probabilité conjointe
Lors du lancer de 2 dés, la probabilité que le dé  soit égal à 2 et que le dé  soit égal à 3 est :

.
𝑥 𝑦

Pr(𝑥 = 2, 𝑦 = 3) = Pr(𝑦 = 3, 𝑥 = 2) = 1
36
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De la règle de la somme à la marginalisation
Avec plusieurs variables, la règle de la somme nous indique comment en ignorer une. Par exemple, la
probabilité que le premier dé affiche 1 est : . On parle
alors de probabilité marginale, car on peut écrire la probabilité cumulative dans la marge d’un tableau
de probabilités conjointes.

Pr(𝑥 = 1) = Pr(𝑥 = 1, 𝑦 ∈ {1, 2, 3, 4, 5, 6}) = 6
36
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De la règle de la somme à la marginalisation
La probabilité que deux dés totalisent 4 est : .Pr(𝑥 + 𝑦 = 4) = 3

36
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Probabilité conditionnelle
Quelle est la probabilité que le dé  ait une certaine valeur sachant que le total est égal à 4 ? Par
exemple, la probabilité que le dé  soit égal à 2 (sachant que le total est 4) : .
Cette probabilité conditionnelle peut être réécrite : .

𝑥
𝑥 Pr(𝑥 = 2 | 𝑥 + 𝑦 = 4) = 1

3
Pr(𝑥 = 2 | 𝑥 + 𝑦 = 4) = = =Pr(𝑥=2,𝑥+𝑦=4)

Pr(𝑥+𝑦=4)
1/36
3/36

1
3
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Confusion of the inverse
Notez que  n’est pas nécessairement égal – et n’est généralement pas égal – à . Par
exemple : la probabilité de mourir en sachant que vous avez été attaqué par un requin n’est pas la même
que la probabilité d’avoir été attaqué par un requin en sachant que vous êtes mort (cf. 

). De la même manière, .

Pr(𝑥 | 𝑦) Pr(𝑦 | 𝑥)

confusion of the
inverse 𝑝(données | ) ≠ 𝑝( | données)� 0 � 0
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Dérivation du théorème de Bayes
À partir des axiomes de Kolmogorov, et des définitions des probabilités conjointes, marginales, et
conditionnelles, découle la règle du produit (version générale) :

𝑝(𝑥, 𝑦) = 𝑝(𝑥 | 𝑦)𝑝(𝑦) = 𝑝(𝑦 | 𝑥)𝑝(𝑥)

𝑝(𝑦 | 𝑥)𝑝(𝑥) = 𝑝(𝑥 | 𝑦)𝑝(𝑦)

Par exemple, .Pr(𝑥 = 2, 𝑦 = pair) = × = × = × = × = ≈ 0.0833
3
36
18
36

18
36

3
36
3
36

3
36

3
18

18
36

3
6

6
36

3
36
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Dérivation du théorème de Bayes
À partir des axiomes de Kolmogorov, et des définitions des probabilités conjointes, marginales, et
conditionnelles, découle la règle du produit (version générale) :

𝑝(𝑥, 𝑦) = 𝑝(𝑥 | 𝑦)𝑝(𝑦) = 𝑝(𝑦 | 𝑥)𝑝(𝑥)

𝑝(𝑦 | 𝑥)𝑝(𝑥) = 𝑝(𝑥 | 𝑦)𝑝(𝑦)

Puis, en divisant chaque côté par  :𝑝(𝑥)

𝑝(𝑦 | 𝑥) =
𝑝(𝑥 | 𝑦)𝑝(𝑦)

𝑝(𝑥)

𝑝(𝑥 | 𝑦) = 𝑝(𝑦 | 𝑥)𝑝(𝑥)
𝑝(𝑦)

Si on remplace  par  et  par  :𝑥 hypothèse 𝑦 données

Pr(hypothèse | données) =
Pr(données | hypothèse) × Pr(hypothèse)

somme des produits

25

Ladislas Nalborczyk - IMSB2026



Exercice - Problème du sac de billes ( )
Imaginons que nous disposions d’un sac contenant 4 billes. Ces billes peuvent être soit blanches, soit
bleues. Nous savons qu’il y a précisément 4 billes, mais nous ne connaissons pas le nombre de billes de
chaque couleur.

McElreath, 2020

Nous savons cependant qu’il existe cinq possibilités (que nous considérons comme nos hypothèses) :

⚪  ⚪  ⚪  ⚪

🔵  ⚪  ⚪  ⚪

🔵  🔵  ⚪  ⚪

🔵  🔵  🔵  ⚪

🔵  🔵  🔵  🔵
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Exercice - Problème du sac de billes ( )
Le but est de déterminer quelle combinaison serait la plus probable, sachant certaines observations.
Imaginons que l’on tire trois billes à la suite, avec remise, et que l’on obtienne la séquence suivante : 🔵  ⚪
🔵 .

McElreath, 2020

Cette séquence représente nos données. À partir de là, quelle inférence peut-on faire sur le contenu du
sac ? En d’autres termes, que peut-on dire de la probabilité de chaque hypothèse ?

⚪  ⚪  ⚪  ⚪

🔵  ⚪  ⚪  ⚪

🔵  🔵  ⚪  ⚪

🔵  🔵  🔵  ⚪

🔵  🔵  🔵  🔵

02:00
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Énumérer les possibilités
Hypothèse : 🔵  ⚪  ⚪  ⚪ Données : 🔵
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Énumérer les possibilités
Hypothèse : 🔵  ⚪  ⚪  ⚪ Données : 🔵  ⚪
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Énumérer les possibilités
Hypothèse : 🔵  ⚪  ⚪  ⚪ Données : 🔵  ⚪  🔵

30

Ladislas Nalborczyk - IMSB2026



Énumérer les possibilités
Hypothèse : 🔵  ⚪  ⚪  ⚪ Données : 🔵  ⚪  🔵
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Énumérer les possibilités
Sous cette hypothèse,  chemins (sur ) conduisent au résultat obtenu. Qu’en est-il des autres
hypothèses ?

3 = 6443
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Comparer les hypothèses
Au vu des données, l’hypothèse la plus probable est celle qui maximise le nombre de manières
possibles d’obtenir les données obtenues.

Hypothèse Façons d’obtenir les données

⚪  ⚪  ⚪  ⚪ 0 x 4 x 0 = 0

🔵  ⚪  ⚪  ⚪ 1 x 3 x 1 = 3

🔵  🔵  ⚪  ⚪ 2 x 2 x 2 = 8

🔵  🔵  🔵  ⚪ 3 x 1 x 3 = 9

🔵  🔵  🔵  🔵 4 x 0 x 4 = 0
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Accumulation d’évidence
Dans le cas précédent, nous avons considéré que toutes les hypothèses étaient équiprobables a priori
(suivant le ). Cependant, on pourrait avoir de l’information a priori, provenant de
nos connaissances (des particularités des sacs de billes par exemple) ou de données antérieures.

principe d’indifférence

Imaginons que nous tirions une nouvelle bille du sac, comment incorporer cette nouvelle donnée ?
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Accumulation d’évidence
Il suffit d’appliquer la même stratégie que précédemment, et de mettre à jour le dernier compte en le
multipliant par ces nouvelles données. Yesterday’s posterior is today’s prior ( ).

Hypothèse Façons de produire 🔵 Compte précédent Nouveau compte

⚪  ⚪  ⚪  ⚪ 0 0 0 x 0 = 0

🔵  ⚪  ⚪  ⚪ 1 3 3 x 1 = 3

🔵  🔵  ⚪  ⚪ 2 8 8 x 2 = 16

🔵  🔵  🔵  ⚪ 3 9 9 x 3 = 27

🔵  🔵  🔵  🔵 4 0 0 x 4 = 0

Lindley, 2000
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Incorporer un prior
Supposons maintenant qu’un employé de l’usine de fabrication des billes nous dise que les billes bleues
sont rares… Cet employé nous dit que pour chaque sac contenant 3 billes bleues, ils fabriquent deux sacs
en contenant seulement deux, et trois sacs en contenant seulement une. Il nous apprend également
que tous les sacs contiennent au moins une bille bleue et une bille blanche…

Hypothèse Compte précédent Prior usine Nouveau compte

⚪  ⚪  ⚪  ⚪ 0 0 0 x 0 = 0

🔵  ⚪  ⚪  ⚪ 3 3 3 x 3 = 9

🔵  🔵  ⚪  ⚪ 16 2 16 x 2 = 32

🔵  🔵  🔵  ⚪ 27 1 27 x 1 = 27

🔵  🔵  🔵  🔵 0 0 0 x 0 = 0
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Des énumérations aux probabilités
La probabilité d’une hypothèse après avoir observé certaines données est proportionnelle au nombre de
façons qu’a cette hypothèse de produire les données observées, multiplié par sa probabilité a priori.

Pr(hypothèse | données) ∝ Pr(données | hypothèse) × Pr(hypothèse)

Pour passer des plausibilités aux probabilités, il suffit de standardiser ces plausibilités pour que la
somme des plausibilités de toutes les hypothèses possibles soit égale à .1

Pr(hypothèse | données) =
Pr(données | hypothèse) × Pr(hypothèse)

somme des produits
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Des énumérations aux probabilités
On définit  comme la proportion de billes bleues dans le sac.

Hypothèse Manières de produire les
données

Probabilité

⚪  ⚪  ⚪  ⚪ 0 0 0

🔵  ⚪  ⚪  ⚪ 0.25 3 0.15

🔵  🔵  ⚪  ⚪ 0.5 8 0.40

🔵  🔵  🔵  ⚪ 0.75 9 0.45

🔵  🔵  🔵  🔵 1 0 0

𝑝

𝑝

ways <- c(0, 3, 8, 9, 0)1
ways / sum(ways)2

[1] 0.00 0.15 0.40 0.45 0.00
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Notations, terminologie
 est un paramètre ou vecteur de paramètres (e.g., la proportion de billes bleues).𝜃

 la probabilité conditionnelle des données  sachant le paramètre  .𝑝(𝑥 | 𝜃) 𝑥 𝜃 [𝑝(𝑥 | 𝜃 = 𝜃)]
 une fois que la valeur de  est connue, est vue comme la fonction de vraisemblance

(likelihood) du paramètre . Attention, il ne s’agit pas d’une distribution de probabilité valide
.

𝑝(𝑥 | 𝜃) 𝑥
𝜃

[𝑝(𝑥 = 𝑥 | 𝜃)]
 la probabilité a priori de .𝑝(𝜃) 𝜃

 la probabilité a posteriori de  (sachant ).𝑝(𝜃 | 𝑥) 𝜃 𝑥

 la probabilité marginale de  (sur ) ou “vraisemblance marginale”, “vraisemblance intégrée”.𝑝(𝑥) 𝑥 𝜃

𝑝(𝜃 | 𝑥) = = = ∝ 𝑝(𝑥 | 𝜃)𝑝(𝜃)
𝑝(𝑥 | 𝜃)𝑝(𝜃)

𝑝(𝑥)
𝑝(𝑥 | 𝜃)𝑝(𝜃)
𝑝(𝑥 | 𝜃)𝑝(𝜃)∑

𝜃

𝑝(𝑥 | 𝜃)𝑝(𝜃)
𝑝(𝑥 | 𝜃)𝑝(𝜃)d𝑥∫

𝜃
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Inférence bayésienne
Dans ce cadre, pour chaque problème, nous allons suivre 3 étapes :

Construire le modèle (l’histoire des données): likelihood + prior.

Mettre à jour grâce aux données, calculer la probabilité a posteriori.

Évaluer le modèle, qualité du “fit”, sensibilité, résumer les résultats, ré-ajuster.

Bayesian inference is really just counting and comparing of possibilities […] in order to make
good inference about what actually happened, it helps to consider everything that could
have happened ( ).

“
McElreath, 2016
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Un peu de logique
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Un peu de logique, quelques syllogismes
Exemple 1

Si un suspect ment, il transpire. (On observe que) Ce suspect transpire.

Par conséquent, ce suspect ment.

Exemple 2

Si un suspect transpire, il ment. (On observe que) Ce suspect ne transpire pas.

Par conséquent, ce suspect ne ment pas.

Exemple 3

Tous les menteurs transpirent. (On observe que) Ce suspect ne transpire pas.

Par conséquent, ce suspect n’est pas un menteur.
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Arguments invalides

Affirmation du conséquent : 

Si il a plu, alors le sol est mouillé (A implique B). Le sol est mouillé (B). Donc il a plu (A).

𝐴 ⇒ 𝐵,  𝐵
𝐴

Négation de l’antécédent : 

Si il a plu, alors le sol est mouillé (A implique B). Il n’a pas plus (non A). Donc le sol n’est pas mouillé (non
B).

𝐴 ⇒ 𝐵,  ¬𝐴
¬𝐵

43

Ladislas Nalborczyk - IMSB2026



Arguments valides

Modus ponens : 

Si on est lundi, alors John ira au travail (A implique B). On est lundi (A). Donc John ira au travail (B).

𝐴 ⇒ 𝐵,  𝐴
𝐵

Modus tollens : 

Si mon chien détecte un intru, alors il aboie (A implique B). Mon chien n’a pas aboyé (non B). Donc il n’a
pas détecté d’intrus (non A).

𝐴 ⇒ 𝐵,  ¬𝐵
¬𝐴
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Logique, fréquentisme, et raisonnement probabiliste
Le modus tollens est un des raisonnements logiques les plus importants et les plus performants. Dans le
cadre de l’inférence statistique, il s’applique parfaitement au cas suivant : “Si  est vraie, alors  ne
devrait pas se produire. On observe . Alors  est fausse”.

� 0 𝑥
𝑥 � 0

Mais nous avons le plus souvent affaire à des hypothèses “continues” (probabilistes).

L’inférence fréquentiste (fishérienne) est elle aussi probabiliste, de la forme “Si  est vraie, alors  est
peu probable. On observe . Alors  est peu probable.”

� 0 𝑥
𝑥 � 0

Or cet argument est invalide, le modus tollens ne s’applique pas au monde probabiliste (e.g., 
; ).

Pollard &
Richardson, 1987 Rouder, Morey, Verhagen, et al., 2016

Par exemple :

Si un individu est un homme (“man”), alors il est peu probable qu’il soit pape.

François est pape.

François n’est donc certainement pas un homme…

45

Ladislas Nalborczyk - IMSB2026



L’échec de la falsification
Poppérisme naïf : la science progresse par falsification logique, donc la statistique devrait viser la
falsification. Mais…

Les hypothèses théoriques ne sont pas les modèles (hypothèses statistiques).

Models are devices that connect theories to data. A model is an instanciation of a theory as a
set of probabilistic statements ( ).“ Rouder, Morey, & Wagenmakers, 2016

Nos hypothèses sont souvent probabilistes.

Erreurs de mesure (e.g., ).faster-than-light neutrino anomaly

La falsification concerne le problème de la démarcation, pas celui de la méthode.

La science est une technologie sociale, la falsification est consensuelle, et non pas logique.
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Comparaison de modèles
On s’intéresse au lien entre deux variables aléatoires continues,  et .𝑥 𝑦
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Comparaison de modèles
L’hypothèse de modélisation la plus simple est de postuler une relation linéaire.

48

Ladislas Nalborczyk - IMSB2026



Comparaison de modèles
Cette description peut-être améliorée pour mieux prendre en compte les données qui s’écartent de la
prédiction linéaire.
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Comparaison de modèles
Un ensemble de  points peut être exhaustivement (i.e., sans erreur) décrit par une fonction
polynomiale d’ordre . Augmenter la complexité du modèle améliore donc la précision de notre
description des données mais réduit la généralisabilité de ses prédictions (bias-variance tradeoff).

Nous avons besoin d’outils qui prennent en compte le rapport qualité de la description / complexité,
c’est à dire la parcimonie des modèles (e.g., AIC, WAIC).

𝑁

𝑁 − 1
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Notre stratégie
Nous avons nesoin d’un cadre pour développer des modèles cohérents. Nos outils :

Modélisation bayésienne : utiliser les probabilités pour décrire l’incertitude.

Modélisation multi-niveaux : des modèles à multiples niveaux d’incertitude.

Approche par comparaison de modèles : au lieu d’essayer de falsifier un “null model”, on va comparer
des modèles intéressants (par exemple via des critères d’information comme l’AIC ou WAIC).
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Rappels : Théorie des probabilités
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Loi de probabilité, cas discret
Une fonction de masse (probability mass function, ou PMF) est une fonction qui attribue une probabilité
à chaque valeur d’une variable aléatoire. Exemple de la distribution binomiale pour une pièce non
biaisée ( ), probabilité d’obtenir  faces sur 10 lancers.𝜃 = 0.5 𝑁

# PMFs sum to 11
dbinom(x = 0:10, size = 10, prob = 0.5) %>% sum2

[1] 1
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Loi de probabilité, cas continu
Une (fonction de) densité de probabilité (probability density function, ou PDF), est une fonction qui
permet de représenter une loi de probabilité sous forme d’intégrales (l’équivalent de la PMF pour des
variables aléatoires strictement continues).

# PDFs integrate to 11
integrate(dnorm, -Inf, Inf, mean = 100, sd = 15)2

1 with absolute error < 1.3e-06
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Qu’est-ce qu’une intégrale ?
Une intégrale correspond à la surface (aire géométrique) délimitée par la représentation graphique
d’une fonction, l’aire sous la courbe. Une distribution est dite impropre si son intégrale n’est pas égale à
un nombre fini (e.g., ) et normalisée si son intégrale est égale à 1.+∞
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Aparté, qu’est-ce qu’une intégrale ?

L’intégrale de  sur l’intervalle [90 ; 96] vaut : .𝑓(𝑥) 𝑝(90 < 𝑥 < 96) = 𝑓(𝑥) d𝑥 = 0.142∫ 96
90

integrate(dnorm, 90, 96, mean = 100, sd = 15)1

0.1423704 with absolute error < 1.6e-15
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Exemple d’application n°1
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Diagnostique médical ( )Gigerenzer et al., 2007
Chez les femmes âgées de 40-50 ans, sans antécédents familiaux et sans symptômes, la probabilité
d’avoir un cancer du sein est de 0.008.

Propriétés de la mammographie :

Si une femme a un cancer du sein, la probabilité d’avoir un résultat positif est de 0.90.

Si une femme n’a pas de cancer du sein, la probabilité d’avoir un résultat positif est de 0.07.

Imaginons qu’une femme passe une mammographie, et que le test est positif. Que doit-on inférer ?
Quelle est la probabilité que cette femme ait un cancer du sein ?
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Logique du maximum likelihood
Une approche générale de l’estimation de paramètre.

Les paramètres gouvernent les données, les données dépendent des paramètres.

Sachant certaines valeurs des paramètres, nous pouvons calculer la probabilité conditionnelle des
données observées.

Le résultat de la mammographie (i.e., les données) dépend de la présence / absence d’un cancer
du sein (i.e., le paramètre).

L’approche par maximum de vraisemblance pose la question : “Quelles sont les valeurs du paramètre
qui rendent les données observées les plus probables ?”

Spécifier la probabilité conditionnelle des données .𝑝(𝑥 | 𝜃)
Quand on le considère comme fonction de , on parle de vraisemblance (likelihood) :

.
𝜃

(𝜃 | 𝑥) = 𝑝(𝑋 = 𝑥 | 𝜃)
L’approche par maximum de vraisemblance consiste donc à maximiser cette fonction, en utilisant les
valeurs (connues) de .𝑥
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Probabilité conditionnelle
Si une femme a un cancer du sein, la probabilité d’obtenir un résultat positif est de .90.

Pr(Mam=+ | Cancer=+) = 0.90
Pr(Mam=- | Cancer=+) = 0.10

Si une femme n’a pas de cancer du sein, la probabilité d’obtenir un résultat positif est de .07.

Pr(Mam=+ | Cancer=-) = 0.07
Pr(Mam=- | Cancer=-) = 0.93
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Diagnostique médical, maximum likelihood
Si le test est positif, la logique du maximum de vraisemblance consiste à se demander quelle est la
valeur de  qui maximise  ?

En suivant cette approche, on conclut à la présence d’un cancer (car cela maximise la probabilité
d’apparition d’un mammogramme positif)…

Cancer Mam=+

Pr(Mam=+ | Cancer=+) = 0.90
Pr(Mam=+ | Cancer=-) = 0.07
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Wait a minute…
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Diagnostique médical, fréquences naturelles
Considérons 1000 femmes âgées de 40 à 50 ans, sans antécédents familiaux et sans symptômes de
cancer

8 femmes sur 1000 ont un cancer

On réalise une mammographie

Sur les 8 femmes ayant un cancer, 7 auront un résultat positif

Sur les 992 femmes restantes, 69 auront un résultat positif

Une femme passe une mammographie, le résultat est positif

Que devrait-on inférer ?
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Diagnostique médical, fréquences naturelles

Pr(Cancer=+ | Mam=+) = = ≈ 0.09
7

7 + 69
7
76
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Diagnostique médical, théorème de Bayes

 représente la probabilité a priori de  : tout ce qu’on sait de  avant d’observer les données. En
l’occurrence :  et .

𝑝(𝜃 | 𝑥) =
𝑝(𝑥 | 𝜃)𝑝(𝜃)

𝑝(𝑥)

𝑝(𝜃) 𝜃 𝜃

Pr(Cancer=+) = 0.008 Pr(Cancer=-) = 0.992

prior <- c(0.008, 0.992)1
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Diagnostique médical, théorème de Bayes

 représente la probabilité conditionnelle des données  sachant le paramètre , qu’on appelle
aussi la fonction de vraisemblance (likelihood function) du paramètre .

𝑝(𝜃 | 𝑥) =
𝑝(𝑥 | 𝜃)𝑝(𝜃)

𝑝(𝑥)

𝑝(𝑥 | 𝜃) 𝑥 𝜃

𝜃

like <- rbind(c(0.9, 0.1), c(0.07, 0.93) ) %>% data.frame1
colnames(like) <- c("Mam+", "Mam-")2
rownames(like) <- c("Cancer+", "Cancer-")3
like4

        Mam+ Mam-
Cancer+ 0.90 0.10
Cancer- 0.07 0.93
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Diagnostique médical, théorème de Bayes

 la probabilité marginale de  (sur ). Constante, sert à normaliser la distribution.

𝑝(𝜃 | 𝑥) =
𝑝(𝑥 | 𝜃)𝑝(𝜃)

𝑝(𝑥)

𝑝(𝑥) 𝑥 𝜃

𝑝(𝑥) = 𝑝(𝑥 | 𝜃)𝑝(𝜃)∑
𝜃

(marginal <- sum(like$"Mam+" * prior) )1

[1] 0.07664
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Diagnostique médical, théorème de Bayes

 la probabilité a posteriori de  sachant , c’est à dire ce qu’on sait de  après avoir pris
connaissance de .

𝑝(𝜃 | 𝑥) =
𝑝(𝑥 | 𝜃)𝑝(𝜃)

𝑝(𝑥)

𝑝(𝜃 | 𝑥) 𝜃 𝑥 𝜃

𝑥

(posterior <- (like$"Mam+" * prior ) / marginal )1

[1] 0.09394572 0.90605428
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L’inférence bayésienne comme mise à jour probabiliste
des connaissances
Avant de passer le mammogramme, la probabilité qu’une femme tirée au sort ait un cancer du sein était
de  (prior). Après un résultat positif, cette probabilité est devenue

 (posterior). Ces probabilités sont des expressions de nos connaissances.
Après un mammogramme positif, on pense toujours que c’est “très improbable” d’avoir un cancer, mais
cette probabilité a considérablement évolué relativement à “avant le test”.

Pr(Cancer=+) = 0.008
Pr(Cancer=+ | Mam=+) = 0.09

A Bayesianly justifiable analysis is one that treats known values as observed values of random
variables, treats unknown values as unobserved random variables, and calculates the
conditional distribution of unknowns given knowns and model specifications using Bayes’
theorem ( ).

“
Rubin, 1984
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Exemple d’application n°2
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Monty Hall

0:00 / 0:48
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Monty Hall

Que-feriez-vous (intuitivement) ? Analysez ensuite la situation en utilisant le théorème de Bayes.
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Monty Hall
Il s’agit d’un problème de probabilités conditionnelles… Définissons les évènements suivants :

P1 : l’animateur ouvre la porte 1
P2 : l’animateur ouvre la porte 2
P3 : l’animateur ouvre la porte 3

V1 : la voiture se trouve derrière la porte 1
V2 : la voiture se trouve derrière la porte 2
V3 : la voiture se trouve derrière la porte 3

Si on a choisi la porte n°1 et que l’animateur a choisi la porte n°3 (et qu’il sait où se trouve la voiture), il
s’ensuit que :

Pr(P3 | V1) = , Pr(P3 | V2) = 1, Pr(P3 | V3) = 0.1
2
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Monty Hall
On sait que , on veut connaître  et  afin de pouvoir choisir.
Résolution par le théorème de Bayes.

Pr(V3|P3) = 0 Pr(V1 | P3) Pr(V2 | P3)

Pr(V1 | P3) = = =Pr(P3 | V1) × Pr(V1)
Pr(P3)

×1
2

1
3

1
2

1
3

Pr(V2 | P3) = = =Pr(P3 | V2) × Pr(V2)
Pr(P3)

1 × 1
3

1
2

2
3
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Monty Hall
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Take-home message
Nos intuitions probabilistes sont généralement très mauvaises. Au lieu de compter sur elles, il est plus
sage de se reposer sur des règles logiques (e.g., modus ponens et modus tollens) et probabilistes (e.g.,
règle du produit, règle de la somme, théorème de Bayes) simples, nous assurant de réaliser l’inférence la
plus juste. Autrement dit, “don’t be clever” ( ).

Retenir les définitions des probabilités conjointes, marginales, et conditionnelles, ainsi que la règle du
produit et l’utilisation du théorème de Bayes (qui en découle) pour mettre à jour des connaissances :

McElreath, 2020

𝑝(𝜃 | 𝑥) = = = ∝ 𝑝(𝑥 | 𝜃)𝑝(𝜃)
𝑝(𝑥 | 𝜃)𝑝(𝜃)

𝑝(𝑥)
𝑝(𝑥 | 𝜃)𝑝(𝜃)
𝑝(𝑥 | 𝜃)𝑝(𝜃)∑

𝜃

𝑝(𝑥 | 𝜃)𝑝(𝜃)
𝑝(𝑥 | 𝜃)𝑝(𝜃)d𝑥∫

𝜃
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