Introduction a la modélisation
statistique bayésienne
Un cours en R et Stan avec brms

Ladislas Nalborczyk (CNRS, LPL, Aix-Marseille Univ)




, D, Y,
Préface «J &

Ce cours est grandement inspiré des livres suivants :
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e Kruschke, J. K. (2015). Doing Bayesian Data Analysis, Second Edition: A Tutorial with R, JAGS, and Stan.
Academic Press / Elsevier.

e Gelman, A, Carlin, J. B, Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data
Analysis, third edition. London: CRC Press.

e Lambert, B. (2018). A Student’s Guide to Bayesian Statistics. SAGE Publications Ltd.
e Noél, Y. (2015). Psychologie Statistique. EDP Sciences.

e Nicenboim, B., Schad, D., & Vasishth, S. (2021). An Introduction to Bayesian Data Analysis for Cognitive
Science. Available online.

Le code et les slides seront disponibles juste avant chaque séance sur le site de |la formation:
https://Inalborczyk.github.io/IMSB2026/.
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https://bookdown.org/ajkurz/Statistical_Rethinking_recoded/
https://vasishth.github.io/bayescogsci/book/
https://lnalborczyk.github.io/IMSB2026/

Obijectifs

Objectifs généraux :

e Comprendre les concepts fondamentaux de la statistique bayésienne.
o Etre capable de comprendre des articles décrivant des analyses bayésiennes.

e Bonus: Réaliser que l'approche bayésienne est plus intuitive que l'approche fréquentiste.

Objectifs pratiques:

e Etre capable de réaliser une analyse compléte (i.e.,, identification du modeéle approprié, écriture du
modele mathématique, implémentation en R, interprétation et report des résultats) d'un jeu de
données simple.
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Planning

Cours n°01: Introduction a l'inférence bayésienne

Cours Nn°02 : Modele Beta-Binomial

Cours Nn°03 : Introduction a brms, modele de régression linéaire
Cours Nn°04 : Modele de régression linéaire (suite)

Cours n°05 : Markov Chain Monte Carlo

Cours n°06 : Modele linéaire généralisé

Cours n°07 : Comparaison de modeles

Cours N°08 : Modeles multi-niveaux (généralisés)

Cours n°09 : Examen final
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Interprétations probabilistes

Quelle est la probabilité...

e D'obtenir un chiffre pair sur un lancer de dé ?

e Que japprenne quelgque chose pendant cette formation ?

Est-ce gu'il s'agit, pour chaque exemple, de la méme sorte de probabilité ?
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Interprétation classique (ou théorique)

nombre de cas favorables B 3 B 1

Pr(pair) = = — ==
t(parr) nombre de cas possibles 6 2

Probleme : cette définition est uniquement applicable aux situations dans lesquelles il n'y a gu’'un
nombre fini de résultats possibles équiprobables...

Par exemple, quelle est |la probabilité qu'il pleuve demain ?

Pr(pluie) = pluie _ !
P ~ {pluie, non-pluie} 2
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Interprétation fréquentiste (ou empirique)

. n
Pr(x) = lim —=
n—  Hy

Ou n, est le nombre d'occurrences de I'évenement X et n; le nombre total d'essais. L'interprétation
fréquentiste postule que, a long-terme (i.e., guand le nombre d'essais s'approche de I'infini), la fréquence
relative va converger exactement vers ce gqu'on appelle “probabilité”.

Conséquence : le concept de probabilité s'appligue uniguement a des ensembles d'évenements, et non

a des évéenements individuels.
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Interprétation fréquentiste (ou empirique)

library(tidyverse)

1
2
3 sample(x = c(@, 1), size = 500, prob = c(0.5, 0.5), replace = TRUE) %>%
4 data.frame() %>%

5 mutate(x = seq_along(.), y = cummean(.) ) %>%

6

7

8

9

ggplot(aes(x = x, y =y) ) +
geom_line(lwd = 1) +
geom_hline(yintercept = 0.5, 1ty = 3) +

labs(x = "Nombre de lancers", y = "Proportion de faces") +
10 ylim(0, 1)
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Limites de l'interprétation fréquentiste..

Quelle classe de référence ? Quelle est la probabilité que je vive jusqu'a 80 ans ? En tant gu’homme ? En
tant que Francais ?

Quid des évenements qui ne peuvent pas se répéter ? Quelle est la probabilité que j'apprenne quelque
chose pendant cette formation ?

A partir de combien de lancers (d’'une piéce par exemple) a-t-on une bonne approximation de la
probabilité ? Une classe finie d'évenements de taille n ne peut produire que des fréquences relatives de
précision 1/n...
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Interprétation propensionniste

Les propriétés fréquentistes (i.e., a long terme) des objets (e.g., une piece) seraient provoquées par des
propriétés physiques intrinseques aux objets. Par exemple, une piéce biaisée va engendrer une
fréquence relative (et donc une probabilité) biaisée en raison de ses propriétés physiques. Pour les
propensionnistes, les probabilités représentent ces caractéristiques intrinséques, ces propensions a
générer certaines fréquences relatives, et non les fréquences relatives en elles-mémes.

Conséquence : ces propriétés sont les propriétés d'évenements individuels... et non de séquences!
L'interprétation propensionniste nous permet donc de parler de la probabilité d'évenements uniques.
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Interprétation logique

Il'y a 10 étudiants dans cette salle
9 portent un t-shirt vert
1 porte un t-shirt rouge
Une personne est tirée au sort...

Conclusion n°1: I'étudiant tiré au sort porte un t-shirt v/

Conclusion n°2 : I'étudiant tiré au sort porte un t-shirt vert X

Conclusion n°3: 'étudiant tiré au sort porte un t-shirt rouge X
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Interprétation logique

L'interprétation logique du concept de probabilité essaye de généraliser la logique (vrai / faux) au monde
probabiliste. La probabilité représente donc le degré de support logique qu’'une conclusion peut avoir,
relativement a un ensemble de prémisses (Carnap, 1971; Keynes, 1921).

Conséquence : toute probabilité est conditionnelle.
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Interprétation bayésienne

La probabilité est une mesure du degré d’'incertitude. Un évenement certain aura donc une probabilité
de1et un évenement impossible une probabilité de O.

1

So to assign equal probabilities to two events is not in any way an assertion that they must
occur equally often in any random experiment [..], it is only a formal way of saying | don't
know (Jaynes, 1986).

Pour parler de probabilités, dans ce cadre, nous n'avons plus besoin de nous référer a la limite

d'occurrence d'un évenement (fréquence).
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Interprétations probabilistes

Interprétation classique (Laplace, Bernouilli, Leibniz)

Interprétation fréquentiste (Venn, Reichenbach, von Mises)

Interprétation propensionniste (Popper, Miller)

Interprétation logique (Keynes, Carnap)

Interprétation bayésienne (Jeffreys, de Finetti, Savage)

Voir plus de détails sur la Stanford Encyclopedia of Philosophy.
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Interprétations probabilistes - résumé

Probabilité épistémique Probabilité physique
Toute probabilité est conditionnelle a de Les probabilités dépendent d'un état du monde, de
I'information disponible (e.g., prémisses ou caractéristiques physiques, elles sont
données). La probabilité est utilisée comme moyen indépendantes de I'information disponible (ou de
de quantifier I'incertitude. I'incertitude).
Interprétation logique, bayésienne. Interprétation classique, fréquentiste.
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Axiomes des probabilités (Kolmogorov, 1933)

Une probabilité est une valeur numérique assignée a un événement A, compris comme une possibilité
appartenant a l'univers Q ('ensemble de toutes les issues possibles).

Les probabilités se conforment aux axiomes suivants :

e Non-négativité: Pr(A) = 0
o Normalisation : Pr(€2) = 1

o Additivité (pour des évenements incompatibles) : Pr(A; u A,) = Pr(A;) + Pr(4,)

Le dernier axiome est également connu comme la regle de la somme, et peut se généraliser a des
évenements non mutuellement exclusifs : Pr(A; u A,) = Pr(A,) + Pr(4A,) — Pr(A; N A»).
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Régle de la somme et régle du produit

Reégle de la somme (pour deux évenements mutuellement exclusifs) :
Pr(A; uA,) = Pr(A,) + Pr(4,) — Pr(A; N A»).

Pensez a la probabilité d'obtenir un nombre impair lors d'un lancer de dé. Nous pouvons |'écrire sous la
forme Pr(x = 1) + Pr(x = 3) + Pr(x = 5) = 2.
Régle du produit (pour deux évenements indépendants) : Pr(A; N A,) = Pr(A;) x Pr(A»,).

Pensez a la probabilité d'obtenir deux 6 consécutifs lors de deux lancers de dé. On peut 'écrire sous la

forme Pr(x = 6,y = 6) = % X % = %.

Si vous comprenez et retenez ces deux regles, vous maitrisez déja la statistique bayésienne !
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Probabilité conjointe

Lors du lancer de 2 dés, |la probabilité que le dé x soit égal a 2 et que le dé y soit égal a 3 est:
Pr(x=2,y=3)=Pr(y =3,x =2) = .

Ladislas Nalborczyk - IMSB2026
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De la régle de la somme & la marginalisation

Avec plusieurs variables, la regle de la somme nous indigue comment en ignorer une. Par exemple, la
probabilité que le premier dé affichelest:Pr(x = 1) =Pr(x =1,y € {1,2,3,4,5,6}) = %. On parle
alors de probabilité marginale, car on peut écrire la probabilité cumulative dans la marge d'un tableau
de probabilités conjointes.

—
1

2 3 4 5 6

X
Ladislas Nalborczyk - IMSB2026

20



De la régle de la somme & la marginalisation

La probabilité que deux dés totalisent 4 est : Pr(x + y = 4) = %.
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Probabilité conditionnelle

Quelle est |la probabilité que le dé X ait une certaine valeur sachant que le total est égal a 4 ? Par
exemple, la probabilité que le dé x soit égal a 2 (sachant que le totalest 4) :Pr(x =2 | x+y =4)

Cles . - R L. Pr(x=2, =4
Cette probabilité conditionnelle peut étre réécrite :Pr(x =2 | x+y =4) = r(er(x:;J;;;) ) - égg =
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Confusion of the inverse

Notez que Pr(x | y) n'est pas nécessairement égal — et n'est généralement pas égal —a Pr(y | x). Par
exemple : la probabilité de mourir en sachant que vous avez été attaqué par un requin n'est pas la méme
que la probabilité d'avoir été attaqué par un requin en sachant que vous étes mort (cf. confusion of the

inverse). De la méme maniere, p(données | Og) # p(d, | données).

Ladislas Nalborczyk - IMSB2026
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Dérivation du théoréme de Bayes

A partir des axiomes de Kolmogorov, et des définitions des probabilités conjointes, marginales, et
conditionnelles, découle la régle du produit (version générale) :

p(x,y) = p(x | Y)p(y) = p(y | x)p(x)
p(y | x)p(x) = p(x | ) p(y)

3 3
Par exemple, Pr(x = 2,y = pair) = % x% = %x% = %x % = %x% = % =~ 0.0833.
36 36

1 2 3 4 5 6
X
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25
Dérivation du théoréme de Bayes

A partir des axiomes de Kolmogorov, et des définitions des probabilités conjointes, marginales, et
conditionnelles, découle la régle du produit (version générale) :

p(x,y) = p(x | Y)p(y) = p(y | x)p(x)
p(y | X)p(x) = p(x | y)p(y)

Puis, en divisant chague coté par p(x):

_ px [ yp®y)
pQy | x) = ()
p(x|y) = P | X)p(x)

p(y)

Si on remplace x par hypothese et y par données :

Pr(données | hypothese) x Pr(hypothese)

Pr(hypothese | données) = somme des produits
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Exercice - Probléeme du sac de billes (McElreath, 2020)

Imaginons que nous disposions d'un sac contenant 4 billes. Ces billes peuvent étre soit blanches, soit
bleues. Nous savons qu'il y a précisément 4 billes, mais nous ne connaissons pas le nombre de billes de

chaqgue couleur.

Nous savons cependant qu'il existe cing possibilités (que nous considérons comme nos hypotheses) :
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Exercice - Probléeme du sac de billes (McElreath, 2020)

Le but est de déterminer quelle combinaison serait la plus probable, sachant certaines observations.
Imaginons que l'on tire trois billes a |la suite, avec remise, et que I'on obtienne la séquence suivante : o

Cette séguence représente nos données. A partir de 13, quelle inférence peut-on faire sur le contenu du
sac ? En d'autres termes, que peut-on dire de la probabilité de chaque hypothese ?

02.:00




Enumérer les possibilités

Hypothese : ()
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Enumérer les possibilités

Hypothese : ()

o o

NP

(¢]

.\ //O

o
o
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Enumérer les possibilités

Hypoth‘ese:e Données: @ @
] .OOO @000 0000 .OOO .
O.OO OOO.
.OO OOO
(©] (0]
Oo OO
(0] (@)
(0] 1) o (@)
(®) (0)
(@) (o) (o) (o)
2& o \\\\ //// o %%
o o /
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Enumérer les possibilités

Hypothese : @ Données: @ @

o 0000 0000 0

00°
o©
(@)
oO
Oo oO
o (@)
(©] o
(©)] (0]
©) (@)
() (@)
(©] o P o
o (0]
O o) © © o) (0]
()
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Enumérer les possibilités

Sous cette hypothése, 3 chemins (sur 43 = 64) conduisent au résultat obtenu. Qu'en est-il des autres
hypotheses ?

Ladislas Nalborczyk - IMSB2026
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Comparer les hypothéses

Au vu des données, I'hypothése la plus probable est celle qui maximise le nombre de maniéres
possibles d'obtenir les données obtenues.

Hypothése Facons d’obtenir les données

Ox4x0=0
@ 1x3x1=3
X 2x2x2=8
XX 3x1x3=9
000 4X0X4=0

Ladislas Nalborczyk - IMSB2026
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Accumulation d’évidence

Dans le cas précédent, nous avons considéré que toutes les hypotheses étaient équiprobables a priori
(suivant le principe d'indifférence). Cependant, on pourrait avoir de I'information a priori, provenant de
Nos connaissances (des particularités des sacs de billes par exemple) ou de données antérieures.

Imaginons que nous tirions une nouvelle bille du sac, comment incorporer cette nouvelle donnée ?
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Accumulation d’évidence

Il suffit d'appliquer la méme stratégie que précédemment, et de mettre a jour le dernier compte en le
multipliant par ces nouvelles données. Yesterday'’s posterior is today’s prior (Lindley, 2000).

Hypothése Facons de produire - Compte précédent Nouveau compte
0 0 Ox0=0

@ 1 3 3x1=3

o0 2 8 8x2=16

00 3 9 9x3=27

000 4 0 Ox4=0
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Incorporer un prior

Supposons maintenant qu'un employé de l'usine de fabrication des billes nous dise que les billes bleues
sont rares... Cet employé nous dit que pour chague sac contenant 3 billes bleues, ils fabriquent deux sacs
en contenant seulement deux, et trois sacs en contenant seulement une. Il nous apprend également
gue tous les sacs contiennent au moins une bille bleue et une bille blanche...

Hypotheéese Compte précédent Prior usine Nouveau compte
O O O0x0=0

@ 3 3 3x3=9

00 16 2 16x2=32

000 27 1 27 x1=27

0000 0 0 0x0=0
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Des énumérations aux probabilités

La probabilité d'une hypothése apres avoir observé certaines données est proportionnelle au nombre de
facons qu'a cette hypothese de produire les données observées, multiplié par sa probabilité a priori.

Pr(hypothese | données) « Pr(données | hypothese) x Pr(hypothese)

Pour passer des plausibilités aux probabilités, il suffit de standardiser ces plausibilités pour que la
somme des plausibilités de toutes les hypothéses possibles soit égale a 1.

Pr(données | hypothese) x Pr(hypothese)
somme des produits

Pr(hypothese | données) =

Ladislas Nalborczyk - IMSB2026
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Des énumérations aux probabilités

On définit p comme la proportion de billes bleues dans le sac.

Hypothése p Maniéres de produire les Probabilité
données
O 0 O
@ 0.25 3 015
e 0.5 8 0.40
000 0.75 9 0.45
0000 1 0 0

1 ways <- c(0, 3, 8, 9, 0)
2 ways / sum(ways)

[1] 0.00 0.15 0.40 0.45 0.00
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Notations, terminologie

o O est un paramétre ou vecteur de paramétres (e.g., la proportion de billes bleues).

p(x | 6) la probabilité conditionnelle des données x sachant le paramétre 6 [p(x | 8 = 0)].

p(x | ) une fois que la valeur de x est connue, est vue comme la fonction de vraisemblance
(likelihood) du paramétre 6. Attention, il ne s'agit pas d'une distribution de probabilité valide

[p(x = x| O)].
p(0) la probabilité a priori de 6.

p(@ | x) la probabilité a posteriori de 6 (sachant x).

1" u

p(x) la probabilité marginale de x (sur 6) ou “vraisemblance marginale”, “vraisemblance intégrée”.

px [ O)p®) _ px|0p®) _  pix|O)p®)

p(x) S px|6)p® [ px|O)p6)dx
6 6

p(x | ©)p(0)

p@ | x) =
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Inférence bayésienne

Dans ce cadre, pour chaque probleme, nous allons suivre 3 étapes:

e Construire le modele (I'histoire des données): likelihood + prior.
e Mettre a jour grace aux données, calculer la probabilité a posteriori.

e Evaluer le modéle, qualité du “fit”, sensibilité, résumer les résultats, ré-ajuster.

14

Bayesian inference is really just counting and comparing of possibilities [..] in order to make
good inference about what actually happened, it helps to consider everything that could

have happened (McElreath, 2016).
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Un peu de logique

—GLASBERG

Logic: another thing that

penguins aren’t very good at.

Ladislas Nalborczyk - IMSB2026
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Un peu de logique, quelques syllogismes
Exemple 1

e Siun suspect ment, il transpire. (On observe que) Ce suspect transpire.

e Par conséquent, ce suspect ment.

Exemple 2

e Siun suspect transpire, il ment. (On observe que) Ce suspect ne transpire pas.

e Par conséquent, ce suspect ne ment pas.

Exemple 3

e Tous les menteurs transpirent. (On observe que) Ce suspect ne transpire pas.

e Par conséquent, ce suspect n'est pas un menteur.

Ladislas Nalborczyk - IMSB2026
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Arguments invalides

A= B, B
A
Siil a plu, alors le sol est mouillé (A implique B). Le sol est mouillé (B). Donc il a plu (A).

Affirmation du conséquent :

A= B, A
-B

Siil a plu, alors le sol est mouillé (A implique B). Il n'a pas plus (non A). Donc le sol n'est pas mouillé (non
B).

Négation de 'antécédent :

» Wrong.wrong virong wrong )
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Arguments valides

A=B A
B
Sion est lundi, alors John ira au travail (A impligue B). On est lundi (A). Donc John ira au travail (B).

Modus ponens:

A = B, B
—A
Si mon chien détecte un intru, alors il aboie (A implique B). Mon chien n'a pas aboyé (non B). Donc il n'a
pas détecté d'intrus (non A).

Modus tollens:




45

Logique, fréquentisme, et raisonnement probabiliste

Le modus tollens est un des raisonnements logiques les plus importants et les plus performants. Dans le
cadre de I'inférence statistique, il sS'lapplique parfaitement au cas suivant : “Si O est vraie, alors X ne
devrait pas se produire. On observe x. Alors [ est fausse”.

Mais nous avons le plus souvent affaire a des hypothéeses “continues” (probabilistes).

L'inférence fréquentiste (fishérienne) est elle aussi probabiliste, de la forme “Si O est vraie, alors x est
peu probable. On observe Xx. Alors [ est peu probable.”

Or cet argument est invalide, le modus tollens ne s'applique pas au monde probabiliste (e.g., Pollard &
Richardson, 1987; Rouder, Morey, Verhagen, et al., 2016).

Par exemple:

e Siun individu est un homme (*man”), alors il est peu probable qu'il soit pape.
» Francois est pape.

e Francois n'est donc certainement pas un homme...
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L'échec de la falsification

Poppérisme naif : la science progresse par falsification logigue, donc la statistigue devrait viser la
falsification. Mais...

e Les hypotheses théoriques ne sont pas les modeles (hypotheses statistiques).

1

Models are devices that connect theories to data. A model is an instanciation of a theory as a
set of probabilistic statements (Rouder, Morey, & Wagenmakers, 2016).

Nos hypothéeses sont souvent probabilistes.

Erreurs de mesure (e.g,, faster-than-light neutrino anomaly).

La falsification concerne le probleme de la démarcation, pas celui de la méthode.

La science est une technologie sociale, la falsification est consensuelle, et non pas logique.
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Comparaison de modeéles

On s'intéresse au lien entre deux variables aléatoires continues, X et .

60 - ®

50 ~

40 -

30 - ®

20 A

10 1

X
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Comparaison de modeéles

L'hypothése de modélisation la plus simple est de postuler une relation linéaire.

60 - ®

50 ~

40 -

30 1

20 A

10 1

X
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Comparaison de modeéles

Cette description peut-étre améliorée pour mieux prendre en compte les données qui s'écartent de la
prédiction linéaire.

60 - ®

50

40 A

30 1

20 A

10 A

X
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Comparaison de modeéles

Un ensemble de N points peut étre exhaustivement (i.e., sans erreur) décrit par une fonction
polynomiale d'ordre N — 1. Augmenter la complexité du modéle améliore donc la précision de notre
description des données mais réduit la généralisabilité de ses prédictions (bias-variance tradeoff).

60 -

50 1

40 1

301

20 1

10 1

X

Nous avons besoin d'outils qui prennent en compte le rapport qualité de la description / complexité,
c'est a dire la parcimonie des modeles (e.g., AIC, WAIQC).
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Notre stratégie

Nous avons nesoin d'un cadre pour développer des modeles cohérents. Nos outils :
 Modélisation bayésienne : utiliser les probabilités pour décrire I'incertitude.
 Modélisation multi-niveaux : des modéles a multiples niveaux d'incertitude.

e Approche par comparaison de modeéles : au lieu d'essayer de falsifier un “null model”, on va comparer
des modeles intéressants (par exemple via des criteres d'information comme I'AIC ou WAIC).
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Rappels : Théorie des probabilités




Loi de probabilité, cas discret

Une fonction de masse (probability mass function, ou PMF) est une fonction qui attribue une probabilité
a chaque valeur d'une variable aléatoire. Exemple de la distribution binomiale pour une piece non

biaisée (8 = 0.5), probabilité d'obtenir N faces sur 10 lancers.

2 3 4 5 6 7 8 9

1
2 dbinom(x = 0:10,

size = 10, prob = 0.5) %>% sum
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Loi de probabilité, cas continu

Une (fonction de) densité de probabilité (probability density function, ou PDF), est une fonction qui
permet de représenter une loi de probabilité sous forme d'intégrales (I'équivalent de la PMF pour des

variables aléatoires strictement continues).

‘v
£ 0.021
=
©
O
®)
—
o
CIJ
©
'S 0014
%2}
-
Q
0
0.00-
0 50 100 150 200
Ql

1
2 1integrate(dnorm, -Inf, Inf, mean = 100, sd = 15)

1 with absolute error < 1.3e-06
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Qu’est-ce qu'une intégrale ?

Une intégrale correspond a |la surface (aire géométrique) délimitée par la représentation graphique
d'une fonction, l'aire sous la courbe. Une distribution est dite impropre si son intégrale n'est pas égale a
un nombre fini (e.g., +*) et normalisée si son intégrale est égale a .
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Aparté, qu'est-ce qu'une intégrale ?

‘L
£ 0.021
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©
0
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CD
©
S 0.01-
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-
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&)

0.00

0 50 100 150 200
Ql

L'intégrale de f(x) sur I'intervalle [90 ; 96] vaut : p(90 < x < 96) = f9?)6 f(x)dx = 0.142,

1 1integrate(dnorm, 90, 96, mean = 100, sd = 15)

0.1423704 with absolute error < 1.6e-15
Ladislas Nalborczyk - IMSB2026



http://127.0.0.1:3494/cours01.html?print-pdf
http://127.0.0.1:3494/cours01.html?print-pdf
http://127.0.0.1:3494/cours01.html?print-pdf

Exemple d'application n°l
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Diagnostique médical (Gigerenzer et al., 2007)

e Chez les femmes agées de 40-50 ans, sans antécédents familiaux et sans symptémes, la probabilité
d’avoir un cancer du sein est de 0.008.

e Propriétés de la mammographie:
= Siune femme a un cancer du sein, la probabilité d'avoir un résultat positif est de 0.90.
» Sjiune femme n'a pas de cancer du sein, la probabilité d'avoir un résultat positif est de 0.07.

e Imaginons qu'une femme passe une mammographie, et que le test est positif. Que doit-on inférer ?
Quelle est la probabilité que cette femme ait un cancer du sein ?
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Logique du maximum likelihood

Une approche générale de lI'estimation de parametre.

Les parametres gouvernent les données, les données dépendent des parametres.

= Sachant certaines valeurs des paramétres, nous pouvons calculer la probabilité conditionnelle des
données observées.

= |e résultat de la mammographie (i.e., les données) dépend de la présence / absence d'un cancer

du sein (i.e., le parametre).

e L'approche par maximum de vraisemblance pose la question : “Quelles sont les valeurs du paramétre
qui rendent les données observées les plus probables ?”

 Spécifier la probabilité conditionnelle des données p(x | 6).

¢ Quand on le considére comme fonction de 6, on parle de vraisemblance (likelihood) :
0@ | x) = pX = x | 6).
e 'approche par maximum de vraisemblance consiste donc a maximiser cette fonction, en utilisant les

valeurs (connues) de X.
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Probabilité conditionnelle

e Siune femme a un cancer du sein, la probabilité d'obtenir un résultat positif est de .90.
» Pr(Mam=+ | Cancer=+) = 0.90
» Pr(Mam=- | Cancer=+) = 0.10
e Siune femme n'a pas de cancer du sein, la probabilité d'obtenir un résultat positif est de .07.
» Pr(Mam=+ | Cancer=-) = 0.07
» Pr(Mam=- | Cancer=-) = 0.93
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Diagnostique médical, maximum likelihood

Si le test est positif, la logigue du maximum de vraisemblance consiste a se demander quelle est |a
valeur de Cancer qui maximise Mam=+ ?

e Pr(Mam=+ | Cancer=+) = 0.90
e Pr(Mam=+ | Cancer=-) = 0.07

En suivant cette approche, on conclut a la présence d’'un cancer (car cela maximise la probabilité
d'apparition d'un mammogramme positif)...
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Wait a minute...
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Diagnostique médical, fréquences naturelles

Considérons 1000 femmes agées de 40 a 50 ans, sans antécédents familiaux et sans symptémes de

cancer
= 8 femmes sur 1000 ont un cancer

On réalise une mammographie

= Sur les 8 femmmes ayant un cancer, 7 auront un résultat positif
= Sur les 992 femmes restantes, 69 auront un résultat positif

Une femme passe une mammographie, le résultat est positif

Que devrait-on inférer ?
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Diagnostique médical, fréquences naturelles

1000
femmes
8 992
cancer no cancer
7 1 69 923
Mam=+ Mam=- Mam=+ Mam=-
Pr(Cancer=+ | Mam=+) = T =~ 0.09

Ladislas NalborczZ/k‘l'— ﬁ?SBZOgé

64



Diagnostique médical, théoréme de Bayes
p(x | ©)p(6)
p(x)

p(0) représente la probabilité a priori de 0 : tout ce qu’on sait de 0 avant d'observer les données. En
I'occurrence : Pr(Cancer=+) = 0.008 et Pr(Cancer=-) = 0.992,

1 prior <- c(0.008, ©0.992)

p@ | x) =
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Diagnostique médical, théoréme de Bayes
p(x | 6)p(O)
p(x)

p(x | O) représente la probabilité conditionnelle des données X sachant le paramétre 6, qu'on appelle
aussi la fonction de vraisemblance (likelihood function) du paramétre 6.

p@ | x) =

like <- rbind(c(0.9, 0.1), c(0.07, 0.93) ) %>% data.frame
colnames(like) <- c("Mam+", "Mam-")

rownames(like) <- c("Cancer+", "Cancer-")

like

Mam+ Mam-
Cancer+ 0.90 0.10
Cancer- 0.07 0.93
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Diagnostique médical, théoréme de Bayes

p(x | ©)p(0)
p(x)

p(x) la probabilité marginale de x (sur 6). Constante, sert a normaliser la distribution.

p(x) = ) p(x | 6)p(©)
0

p@ | x) =

1 (marginal <- sum(like$"Mam+" * prior) )

[1] 0.07664
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Diagnostique médical, théoréme de Bayes

p(x | ©)p(0)
p(x)

p(@ | x) la probabilité a posteriori de @ sachant x, c'est a dire ce qu'on sait de 6 aprés avoir pris

p@ | x) =

connaissance de Xx.

1 (posterior <- (like$"Mam+" * prior ) / marginal )

[1] 0.09394572 0.90605428
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L'inférence bayésienne comme mise & jour probabiliste
des connaissances

Avant de passer le mammogramme, la probabilité gu'une femme tirée au sort ait un cancer du sein était
de Pr(Cancer=+) = 0.008 (prior). Apres un résultat positif, cette probabilité est devenue

Pr(Cancer=+ | Mam=+) = 0.09 (posterior). Ces probabilités sont des expressions de nos connaissances.
Apres un mammogramme positif, on pense toujours que c'est “tres improbable” d’avoir un cancer, mais
cette probabilité a considérablement évolué relativement a “avant le test”.

14

A Bayesianly justifiable analysis is one that treats known values as observed values of random
variables, treats unknown values as unobserved random variables, and calculates the
conditional distribution of unknowns given knowns and model specifications using Bayes'

theorem (Rubin, 1984).
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Exemple d'application n°2




Monty Hall
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Monty Hall
1/3 2/3

[

Que-feriez-vous (intuitivement) ? Analysez ensuite la situation en utilisant le théoreme de Bayes.
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Monty Hall

Il slagit d'un probleme de probabilités conditionnelles... Définissons les évenements suivants:

P1:l'animateur ouvre la porte 1
P2 :I'animateur ouvre la porte 2
P3: 'animateur ouvre la porte 3

V1:la voiture se trouve derriere la porte 1
V2 :la voiture se trouve derriere la porte 2
V3 :la voiture se trouve derriere la porte 3

Si on a choisi la porte N°1 et que I'animateur a choisi la porte n°3 (et qu'il sait ou se trouve la voiture), il
s'ensuit que:

1
PP3| VD)= 2. Pi(P3|V2)=1, Pr(P3|V3)=0.
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Monty Hall

On sait que Pr(V3|P3) = 0, on veut connaitre Pr(V1 | P3) et Pr(V2 | P3) afin de pouvoir choisir.

Résolution par le théoreme de Bayes.

11

Pr(P3 | VI)xPr(Vl) 773 1

Pr(V1 | P3) = br(P3) =2 1 3 _ =
2
1 x !

Pr(P3 | V2) x Pr(V2) 3 2

Pr(V2 [ P3) = Pr(P3) B 13 -3
2
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Monty Hall

1/3

l

213

[

213 0
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Take-home message

Nos intuitions probabilistes sont généralement trés mauvaises. Au lieu de compter sur elles, il est plus
sage de se reposer sur des regles logiques (e.g., modus ponens et modus tollens) et probabilistes (e.g.,
regle du produit, regle de la somme, théoreme de Bayes) simples, nous assurant de réaliser I'inférence la
plus juste. Autrement dit, “don’t be clever” (McElreath, 2020).

Retenir les définitions des probabilités conjointes, marginales, et conditionnelles, ainsi que la regle du
produit et l'utilisation du théoréeme de Bayes (qui en découle) pour mettre a jour des connaissances:

p(x | 9)p®) _  px[O)p®) _  px|6)p®)

p(x) S px|6)p® [ px|O)p6)dx
6 6

PO | x) = p(x | ©)p(0)
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