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Rappels

Principes de I'analyse bayésienne :

e On dispose d'un ensemble de données a analyser
e On suppose un modele génératif défini par un ensemble de parametres

e On dispose d'une connaissance a priori quant a la valeur de ces parametres

14

The first idea is that Bayesian inference is reallocation of credibility across possibilities. The
second foundational idea is that the possibilities, over which we allocate credibility, are
parameter values in meaningful mathematical models (Kruschke, 2015).
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Rappels

Inférence bayésienne : On infere (ou plutdt on déduit) la probabilité que le parametre ait telle ou telle
valeur sachant les données (et le prior) via le théoreme de Bayes.

py | 0) p(®)
p(Y)

Objectif de I'analyse de données bayésienne : Faire évoluer une connaissance a priori sur les parametres

p@|y) = p(y | ©) p(6)

p(6) en une connaissance a posteriori p(@ | y), intégrant I'information contenue dans les données via

p(y | ©).
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Rappels

Les étapes de I'analyse de données bayésienne :

1. Définir le modeéle - I[dentifier les parameétres du modele génératif, définir une distribution a priori pour
ces parametres.

2. Mettre a jour le modeéle - Calculer la distribution a posteriori des parametres (ou une bonne
approximation).

3. Interpréter la distribution postérieure - Comparaison de modeéles, estimation des parametres,
vérification des prédictions du modele.

Objectif du cours : lllustrer les différentes étapes de cette démarche a l'aide d'un modeéle simple (un seul
parametre), le modele Beta-Binomial.
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Le modéele Beta-Binomia

Pourquoi ce modele ?

e Le modele Beta-Binomial couvre de nombreux problemes de la vie courante :

» Réussite / échec a un test

» Présence /absence d'effets secondaires lors du test d'un médicament

e C'est un modele simple
= Un seul parameétre

= Solution analytique
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Loi de Bernoulli

S'appligue a toutes les situations ou le processus de génération des données ne peut résulter qu'en deux
issues mutuellement exclusives (e.g., un lancer de piéce). A chague essai, si on admet que Pr(face) = 6,
alors Pr(pile) = 1 - 6.

Depuis Bernoulli, on sait calculer la probabilité du résultat d'un lancer de piece, du moment que l'on
connait le biais de la piece 6. Admettons que Y = 0 lorsqu'on obtient pile, et que Y = 1 lorsqu’on obtient
face. Alors Y est distribuée selon une loi de Bernoulli :

py|6)=Pr(Y =y|6) =& -06)"
En remplagcant y par 0 ou 1, on retombe bien sur nos observations précédentes:
Pr(Y=1|6=061-900"D=06x1=6
P(Y =0]160)=6"0-0)"Y =1x(1-06)=1-6
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Schéma de Bernoulli

Si l'on dispose d'une suite de lancers {Y; } indépendants et identiquement distribués (i.e., chaque lancer
a une distribution de Bernoulli de probabilité 8), 'lensemble de ces lancers peut étre décrit par une
distribution binomiale.

Par exemple, imaginons que I'on dispose de la séquence de cing lancers suivants : Pile, Pile, Pile, Face,
Face. On peut recoder cette séquence en {0,0,0,1,1}.

Rappel : La probabilité de chaque 1 est 8 est la probabilité de chaque O est 1 — 6.

Quelle est la probabilité d'obtenir 2 faces sur 5 lancers ?
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Schéma de Bernoulli

Sachant que les essais sont indépendants les uns des autres, la probabilité d'obtenir cette séquence est

de(1=0)x (1 =0)x(1=0)x0x0, cestadire:0*(1-0)>.
On peut généraliser ce résultat pour une séquence de n lancers et y “succes” :

&1 -6y

On a jusqu'ici considéré seulement une seule séquence résultant en 2 succes pour 5 lancers, mais |l
existe de nombreuses séquences pouvant résulter en 2 succeés pour 5 lancers (e.g., {0,0,1,0, 1},

{0,1,1,0,0})...
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Coefficient binomia

Le coefficient binomial nous permet de calculer le nombre de combinaisons possibles résultant en y
succes pour n lancers de la maniere suivante (lu “y parmi n” ou “nombre de combinaisons de y parmi

:
(n) n!
=Cp =
y yi(n—-y!

n') :
Par exemple poury = 1 et n = 3, on sait qu'il existe 3 combinaisons possibles :
{0,0,1},{0,1,0},{1,0,0}. On peut vérifier ca par le calcul, en appliquant la formule ci-dessus.

3 3 3! 3x2x1 6
=C1= = =—=3
1 @3- 1x2x1 2

1
2 choose(n = 3, k = 1)

1. La fonction factorielle notée n! associe a tout entier naturel n I'entier :
N'=NxXxX(N-1)x(N-2)x...x3x2x1
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Loi binomiale

n

) (1 — o)
y

p(yI9)=Pr(Y=yI9)=<

La loi binomiale nous permet de calculer la probabilité d'obtenir y succés sur n essais, pour un 6 donné.

Exemple de la distribution binomiale pour une piéce non biaisée (6 = 0.5), indiquant la probabilité
d'obtenir n faces sur 10 lancers (en R: dbinom(x = 0:10, size = 10, prob = 0.5)).

_IIIIIII_
o 1 2 3 4 5 o6 7 8 9 10
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Générer des données a partir d'une distribution binomiale

1 T1library(tidyverse)

2 set.seed(666)

3

4 sample(x = c(@, 1), size = 500, prob = c(0.4, 0.6), replace = TRUE) %>%
data.frame() %>%

mutate(x = seq_along(.), y = cummean(.) ) %>%
ggplot(aes(x = X, y =y) ) +

geom_line(lwd = 1) +

geom_hline(yintercept = 0.6, 1ty = 3) +

labs(x = "Nombre de lancers", y = "Proportion de faces") +
ylim(0, 1)
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Définition du modele (likelihood)

Fonction de vraisemblance (likelihood)

e Nous considérons y comme étant le nombre de succes
e Nous considérons le nombre d'observations n comme étant une constante

¢ Nous considérons 8 comme étant le paramétre de notre modéle (i.e, la probabilité de succés)

La fonction de vraisemblance s'écrit de la maniére suivante:

D(e | y,n) = p(y | @,I’l) = <I’l> @y(l _ @)n—y . @y(l _ @)n—y
y
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Vraisemblance versus probabilité

On lance a nouveau une piéce de biais O (oU 6 représente la probabilité d'obtenir Face). On lance cette
piece deux fois et on obtient une Face et un Pile.

On peut calculer la probabilité d'observer une Face sur deux lancers de piéce en fonction de différentes
valeurs de O de la maniére suivante:

Pr(F,P | 0)+Pr(P,F | 6) =2xPr(P | 6) x Pr(F | 6)
=06(1 -0)+6(1 -0
= 26(1 - 0)

Cette probabilité est définie pour un jeu de données fixe et une valeur de 6 variable. On peut représenter
cette fonction visuellement.
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Vraisemblance versus probabilité

1
2
3 y<-1
4 n<- 2
5
6 data.frame(theta = seq(from = @, to = 1, length.out = 1le3) ) %%
7 mutate(likelihood = dbinom(x = y, size = n, prob = theta) ) %%
8 ggplot(aes(x = theta, y = likelihood) ) +
9 geom_area(color = "orangered", fill = "orangered", alpha = 0.5) +
10 labs(x = expression(paste(theta, " - Pr(face)") ), y = "Vraisemblance (likelihood)")
0.5+
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Vraisemblance versus probabilité

Si on calcule l'aire sous la courbe de cette fonction, on obtient :

1
/ 20(1 - 0)do = -
0 3

1 f <- function(theta) {2 * theta * (1 - theta) }
2 1integrate(f = f, lower = @, upper = 1)

0.3333333 with absolute error < 3.7e-15

Quand on varie 6§, la fonction de vraisemblance n'est pas une distribution de probabilité valide (i.e., son

intégrale n'est pas égale a 1). On utilise le terme de vraisemblance, pour distinguer ce type de fonction
des fonctions de densité de probabilité. On utilise la notation suivante pour mettre I'accent sur le fait que
la fonction de vraisemblance est une fonction de 6, et que les données sont fixes :

(O | data) = p(data | 6).
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Vraisemblance versus probabilité

Vraisemblance versus probabilité
pour deux lancers de piece

Nombre de Faces (y)
theta 0 1 2 Total
o) .00 0.00 0.00 l
0.2 0.64 032 0.04 L
0.4 036 048 O0Jlo 1
0.6 0l6 048 0.36 1
0.8 0.04 0.32 0.64 1

1 0.00 0.00 100 1

Total 2.20 1.60 2.20

Notons que la vraisemblance de 6 pour une donnée particuliére est égale a la probabilité de cette
donnée pour cette valeur de 6. Cependant, la distribution de ces vraisemblances (en colonne) n'est pas
une distribution de probabilité. Dans I'analyse bayésienne, les données sont considérées comme fixes
et la valeur de 6 est considérée comme une variable aléatoire.
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Définition du modéle (prior)

Comment définir un prior dans le cas du lancer de piece ?

Aspect sémantique — /e prior doit pouvoir rendre compte :

e D'une absence d'information
e D'une connaissance d'observations antérieures concernant la piece étudiée

e D'un niveau d’incertitude concernant ces observations antérieures

Aspect mathématique — pour une solution entierement analytique :

e Les distributions a priori et a posteriori doivent avoir la méme forme

e La vraisemblance marginale doit pouvoir se calculer analytiguement

Ladislas Nalborczyk - IMSB2026
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La distribution Beta

p@ | a,b) = Beta(@ | a, b)
= 6*'(1 - 6)"'/B(a, b)
~ ea—l(l o e)b—l

ol a et b sont deux parameétrestelsque a = 0,b = 0, et B(a, b) est une constante de normalisation.

@ 0004+
X
._g
% Parameters
c . a=1,b=1
o
oy . a=2b=2
© | a=4,b=2
)
£ 0.0021 . a=2b=4
C
(V)
&
0.000 -
0.00 0.25 0.50 0.75 1.00

0
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Interprétation des paramétres du prior Beta

On peut exprimer I'absence de connaissance a priori para = b = 1 (distribution orange).

On peut exprimer un prior en faveur d'une absence de biais par a = b > 2 (distribution verte).

On peut exprimer un biais en faveur de Face par a > b (distribution bleue).

On peut exprimer un biais en faveur de Pile par a < b (distribution violette).

0.004 +

N

e

Parameters

~ a=1,b=1
| a=2b=2
. a=4,b=2

0.002 A . a=2,b=4

Densité de probabilit

0.000
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Interprétation des paramétres du prior Beta

Le niveau de certitude augmente avec lasommex = a + b.

o Aucune idée sur la provenance de la piéce:a = b = 1 -> prior plat.

o En attendant le début de I'expérience, on a lancé la piéce 10 fois et observé 5 “Face”:a = b = 5 -> prior
peu informatif.

» La piéce provient de la banque de France:a = b = 50 -> prior fort.

“\Q
£ 0021
0
(40}
—8 Parameters
| -
o a=1,b=1
> " a=50b=5
‘g 0.01 4 a=50,b=50
(Va]
(-
Q
a)

0.00 -

0.00 0.25 0.50 0.75 1.00
(3]
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Interprétation des paramétres du prior Beta

Supposons que I'on dispose d'une estimation de la valeur la plus probable w du paramétre 6. On peut
reparameétriser la distribution Beta en fonction du mode w et du niveau de certitude x :
a=wx-2)+1
b=((1-w)x-2)+1 pour x > 2

Siw = 0.65 et x = 25 alors p(6) = Beta(0 | 15.95,9.05).
Siw = 0.65etx = 10 alors p(6) = Beta(0 | 6.2,3.8).

0.020 —

0.015+4 — T

Parameétres

®=0.65kK =25
| ©0=065k=10

Densité de probabilité
g
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o
o
S
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0.000

0.00 0.25 0.50 0.75 1.00
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Prior conjugué

Formellement, si O est une classe de distributions d'échantillonnage p(y|60), et O est une classe de
distributions a priori pour 6, alors [ est conjuguée a [ si et seulement si :

p(@|y) e Oforall p(- | 8) e Oand p(-) € O

(p.35, Gelman et al,, 2013). En d'autres termes, un prior est appelé conjugué si, lorsqu’il est converti en
une distribution a posteriori en étant multiplié par la fonction de vraisemblance, il conserve la méme
forme. Dans notre cas, le prior Beta est un prior conjugué pour la vraisemblance binomiale, car le
posterior est également une distribution Beta.

1

Le résultat du produit d'un prior Beta et d'une fonction de vraisemblance Binomiale est
proportionnel a une distribution Beta. On dit que la distribution Beta est un prior conjugué
de la fonction de vraisemblance Binomiale.
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Dérivation analytique de la distribution a posteriori

. . . _ B -9 a—1 b—1
Soit un prior défini par: p(@ | a,b) = Beta(a, b) = B — ° 6" (1 - 0)

Soit une fonction de vraisemblance associée a y “Face” pour n lancers:

p(y | n,6) = Bin(y | n,0) = <”> O(1 - )" « (1 — )"
y

Alors (en omettant les constantes de normalisation) :

p@|y,n) « p(y|n,0) pd) Théoreme de Bayes
« Bin(y | n, 0) Beta(@ | a, b)
« (1 = 9" 6% (1 — 6)>! Application des formules précédentes
« @l (1 = )yl En regroupant les puissances des termes identiques

Ici, on a ignoré les constantes qui ne dépendent pas de 6 (i.e., le nombre de combinaisons dans la
fonction de vraisemblance binomiale et la fonction Beta B(a, b) dans le prior Beta).1 En les prenant en
compte, on obtient en effet une distribution a posteriori Beta de la forme suivante :

p(@|y,n) = Beta(y + a,n -y +b)

1. Pour la dérivation complete, voir par exemple ce chapitre.
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Un exemple pour digérer

On observe y = 7 réponses correctes sur n = 10 questions. On choisit un prior Beta(1, 1), c’est a dire un
prior uniforme sur [0, 1]. Ce prior équivaut a une connaissance a priori de O succes et O échecs (i.e., prior

plat).

La distribution postérieure est donnée par :

p@|y.n) = p(y [ n,0) p©)
« Bin(7 | 10,0) Beta(@ | 1, 1)
= Beta(y + a,n -y + b)

= Beta(8,4)
La moyenne de la distribution postérieure est donnée par :
y+a Yy n , @ a+b
n+a+b nn+a+b a+b n+a+b
Ll Ll Rl T | | | | | — N | - Ll
_ data . prior .
posterior weight weight
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Un exemple pour digérer

Prior distribution Beta(1, 1)

2

= 20+
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Influence du prior sur la distribution postérieure

Casn<a+b,(n=10,a =4,b = 16).
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Influence du prior sur la distribution postérieure

Casn=a+b,(n=20,a=4,b=16).
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Influence du prior sur la distribution postérieure

Casn>a+b,(n=40,a =4,b = 16).
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Ce qu'il faut retenir

14

Densité de probabilité

30

The posterior distribution is always a compromise between the prior distribution and the
likelihood function (Kruschke, 2015).
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31
Ce qu'il faut retenir

Plus on a de données, moins le prior a d'influence dans lI'estimation de la distribution a posteriori (et
réciproguement). Attention : Lorsque le prior accorde une probabilité de O 3 certaines valeurs de 6, le
modele est incapable d’'apprendre (ces valeurs sont alors considérées comme “impossibles’)...

0.006 1
NG
.
._rac
'8 0.004
s . Likelihood
£ B quterior
@ .~ Prior
2]
o
A 0.002 1

0.000 1

0.00 0.25 0.50 0.75 1.00
0
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La vraisemblance marginale

Likelihood x Pri
Posterior =—— 00T X THOT -y ixelihood x Prior
Marginal likelihood
p(0 | data) = p(data | ) x p(©) « p(data | ) x p(0)
p(data)

Si on zoom sur la vraisemblance marginale (aussi connue comme evidence)...

p(data) = / p(data, 6) d6 Marginalisation sur le parametre O

p(data) = / p(data | 6) x p(6) d6 Application de la reégle du produit

Ladislas Nalborczyk - IMSB2026
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La vraisemblance marginale

Petit probleme : p(data) s'obtient en calculant la somme (pour des variables discretes) ou l'intégrale
(pour des variables continues) de la densité conjointe p(data, 8) sur toutes les valeurs possibles de 8. Cela
se complique lorsque le modele comprend plusieurs parametres continus...

Par exemple pour deux parametres discrets :

p(data) = 2 Z p(data, 6,, 6,)

6 6

Et pour un modele avec deux parametres continus :

p(data) = / / p(data, 6,, 6,)d6,d6,

6, 6
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La vraisemblance marginale

Trois méthodes pour résoudre (contourner) ce probleme :

e Solution analytigue — Utilisation d'un prior conjugué (e.g., le modele Beta-Binomial).
e Solution discrétisée — Calcul de la solution sur un ensemble fini de points (grid method).

e Solution approchée — On échantillonne “intelligemment” I'espace conjoint des parametres (e.g,,
méthodes MCMC, Cours n°05).
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Distributions discretes

c te pri Pri )
Likelihood Model parameters I m[::'or N rior Posterior hyperparameters Interpr n of hyperpar oot Posterior predictivel"'® 2!
hyperp.
n n c“
Bernoulli p (probability) Beta a, 8 o+ ZZ;, B+n-— Zz,- a — 1 successes, F — 1 failurest™e 1] p(E=1)=—
=1 =1 a + 4
L L n . -
. . ] BetaBin(%|o, §')
Binomial robabili Beta o a+ T, B+ N; — o a — 1 suceesses, 3 — 1 failuresl™o® 1] !
P (probadility) .8 ; 0B )_“T 4 g : s ke binorsel)
Negative binomial = a — 1 total successes, 3 — 1 failures"™® 1 (e p-1 experiments
) i p (probability) Beta a, 8 o+ Z""‘f’ B+rn e, p L
with known failure number, r < . .
i=1 assuming 7 stays fixed)
n -
9 !
k, @ k+ Zz‘-, k total occurrences in l intervals N‘B(:l:|k ’6’} _
= nf +1 2] (negative binomial)
Poisson A (rate) Gamma 1
- NB( o', ——
a, gl s a+ Zzi, B+n o total occurrences in (7 intervals 14+ 8
i=l1 (negative binomial)
(probability vector), k (number of categories; i +( ), wh the number of observati pE=1)= mif
robability vector), k (number of categories; ie., | where ¢; is the number of observations ) e
Categorical (X ity J Dirichlet o 57 elpooonCiy & a; — 1 occurrences of category 419 1] i
size of p) in category i e S
Sho+n
robability vector), & (number of categories; i.e., = y i %lax’
Multinamial g{p " ) K d Dirichlet o o+ Z x; a; — 1 occurrences of category 40" 1) D:.r_Mult(xlx_:x ) _
size of p) = (Dirichlet-multinomial)
Hypergeometric " " "
with known total population | M (number of target members) Beta-binomiall®] n=Na,fp o+ Zx;, B+ Z N; — Zz,- o — 1 successes, 3 — 1 failuresl™® 1]
size, N i=1 i=1 i=1
n
Geometric P (probability) Beta a, a+n, f+ Zm; a — 1 experiments, 3 — 1 total failures"®*® 'l
=]
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Distributions continues

Conjugate prior Prior "
Likelihood Model parameters Jugate p Posterior hyperparameters Interpretation of hyperparameters Posterior predictivel"®' 4l
distribution hyperparameters
Ha E‘;l T 1 n
Normal 2 °2|:| o aﬁ o mean was estimated from observations with total precision (sum of all individual precisions}l]oz and . ] 2
: ) 4 (mean) Normal 1o, 02 i ) N N(&E|ph, ol +o®)F
with known variance ¢@ ( 1 n ) with sample mean g "0
—_ + —_—
2 2
o ©
Normal ( ) N | ; i ( ; ) ' mean was estimated from observations with total precision (sum of all individual precisions)y and N ﬁ| r 1 | 1 51
mean lormal T Ty &) nr), T + nT =P =
with known precision T # (Rl ) Toko £ ' o 2 with sample mean pigy Ho» ™ T
Normal ) " c—u)? variance was estimated from 2ce observations with sample variance 3/« {i.e. with sum of squared
N o (variance) Inverse gamma | cx, 3 "ot 5] s & B+ 72‘ 1 (@ — p) . L ; Bl =a oo (&l 0” = G /')
with known mean u 2! 2 deviations 23, where deviations are from known mean H)
Normal ) Scaled inverse vl + S0 (2 — p)? )
) & (variance) ) v, o} - vy + Y (= = 1) variance was estimated from v observations with sample variance o> by (#|p, 028
with known mean u chi-squared * v+n 0 0
Normal " ; — p)? recision was estimated from 2o observations with sample variance @/ a (i.e. with sum of sguared
) T {precision) Gamma o, groted P B+ 72‘ 1 — 4 e - ! ; Bla 4 toot (E|p, 0% = 8 ja' )P
with known mean 1 9! 9 deviations 24, where deviations are from known mean p)
vy + nE n
PO—, yri+n,a+—,
uand o* Normal-i vn 2 2 stimated f b ti ith I i timated from 2 A +1)
ormal-inverse n F— mean was estimated from i observations with sample mean g ; variance was estimated from 2o
Normalfete €] Assurning ' po, ¥, o Bt 13 (@i -7+ —— ) bservations with sampl e 28 2 (j“!‘ T) N
amma i observations with sample mean gy and sum of squared deviations
exchangeability g B v+n 2 = Ho q o

» I is the sample mean

Probleme : Cette solution est tres contraignante. Idéalement, le modele (likelihood + prior) devrait étre
défini a partir de l'interprétation que lI'on peut faire des parameétres de ces distributions, et non pour

faciliter les calculs...
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La distribution postérieure, grid method

Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation

0.15+1
0.10 1

0.05 1

0.00- ““““““ ““““““
0.00 0.25 0.50 0.75 1.00

5]

Densité de probabilité
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La distribution postérieure, grid method

Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation

0.100 4

0.075

0.050

Densité de probabilité

0.025

0.000
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La distribution postérieure, grid method

Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation

0.10-
\Q
ot
=
[q0)
O
o
|-
o
(D)
©
2 0,051
751
[
()
a
0.00- ||‘ “lll. | .
0.00 0.25 0.50 0.75 1.00
)
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La distribution postérieure, grid method

Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation

0.151

0.101

0.05 1

Densité de probabilité

0‘00_ | ‘ - 1 - I (] ‘ I | ‘
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La distribution postérieure, grid method

Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation

0.04 -
)
]
= 0.03 -
o)
(g0}
0
(@)
-
o
L 0.02-
)
o
[Va]
C
(D]
()
0.01 1 |
0.00- I|”H |H||I||..._
0.00 0.25 0.50 0.75 1.00
6
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La distribution postérieure, grid method

Probléeme du nombre de parametres... En affinant la grille, le colGt computationnel explose :

e 3 parametres avec une grille de 10° noeuds = 10° points de calcul

« 10 paramétres avec une grille de 10° noeuds = 10°° points de calcul

Méme avec El Capitan, le superordinateur le plus rapide actuellement opérationnel (= 1.7 — 2.8 x 10'®

opérations par seconde) :

e En supposant 10 opérations par point de grille
« Nombre total d'opérations: 10°° x 10 = 10°!

. 31 . ~
e Temps nécessaire: 2810W ~ 3.6 x 10'? secondes , soit ~ 115 000 ans pour une seule passe compléte
.OX

de la grille...
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https://en.wikipedia.org/wiki/El_Capitan_(supercomputer)

Echantillonner la distribution postérieure

Pour échantillonner (de maniére intelligente) une distribution postérieure, on peut utiliser différentes
Implémentations des méthodes MCMC (e.g., Metropolis-Hastings, Hamiltonian Monte Carlo) que l'on
discutera au Cours n°05. En attendant, on va travailler avec des échantillons de la distribution postérieure
1) pour s’habituer en préparation aux méthodes MCMC et ii) car c'est plus simple de calculer une
moyenne ou un intervalle de crédibilité sur des échantillons plutét gu’'en calculant des intégrales.

p_grid <- seq(from = @, to = 1, length.out = 1000)
prior <- rep(1l, 1000)
likelihood <- dbinom(x = 12, size = 20, prob = p_grid)

posterior <- (likelihood * prior) / sum(likelihood * prior)
samples <- sample(x = p_grid, size = 1le3, prob = posterior, replace = TRUE)

hist(samples, main = , XLab = expression(theta) )

150

Frequency

0 50

0.3 0.4 0.5 0.6 0.7 0.8 0.9
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La distribution postérieure, résumé

Cas analytique:

a<-b<x-1

n <- 9

y <- 6

p_grid <- seq(from = @, to = 1, length.out = 1000)
posterior <- dbeta(p_grid, +d, n -y + b)

p_grid <- seq(from = @, to = 1, length.out = 1000)

prior <- rep(l, 1000)

likelihood <- dbinom(x =y, size = n, prob = p_grid)
posterior <- (likelihood * prior) / sum(likelihood * prior)

Echantillonner la distribution postérieure pour la décrire :

1 samples <- sample(x = p_grid, size = le4, prob = posterior, replace = TRUE)
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La distribution postérieure, résumé
Méthode analytique

e La distribution postérieure est décrite explicitement

e Le modéle est fortement contraint

Méthode sur grille

e La distribution postérieure n'est donnée que pour un ensemble fini de valeurs
e Plus la grille est fine, meilleure est I'estimation de la distribution postérieure

|11

e Compromis “Précision - Temps de calcu
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Utiliser les échantillons pour résumer la distribution
postérieure

Estimation de la tendance centrale : A partir d'un ensemble d'échantillons d’'une distribution postérieure,
on peut calculer la moyenne, le mode, et la médiane. Par exemple pour un prior uniforme, 10 lancers, et 3
Faces.

1 mode_posterior <- find_mode(samples)

2 mean_posterior <- mean(samples)
3 median_posterior <- median(samples)

Densité de probabilité

mode
médiane
moyenne

0.00 0.25 0.50 0.75
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Utiliser les échantillons pour résumer la distribution
postérieure

Quelle est la probabilité que le biais de la piéce 0 soit supérieur a8 0.5 ?

1 sum(samples > 0.5) / length(samples)

[1] 0.112

Quelle est la probabilité que le biais de la piéce 8 soit compris entre 0.2 et 0.4 ?

1 sum(samples > 0.2 & samples < 0.4) / length(samples)

[1] 0.5482

0.003
N
e
=
S 0.002-
o
—
o
(]
©
'Y 0.001 A
i
c
(]
a

0.000 A

0.00 0.25 0.50 0.75 1.00
0
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Highest density interval (HDI)

Highest density interval (HDI) :

e Le HDI indique les valeurs du parametre qui sont les plus probables (sachant les données et |le prior)

e Plusle HDI est étroit et plus le degré de certitude est élevé

e Lalargeur du HDI diminue avec 'augmentation du nombre de mesures

14

Définition : les valeurs du paramétre 6 contenues dans un HDI a 100(1 — )% sont telles que
p(0) > S ou S est un “seuil” qui satisfait la condition suivante :

/ p(0)dd =1 - q.
6: p(0)>S
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Highest density interval (HDI)
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Highest density interval (HDI)

library(imsb)

set.seed(666)

p_grid <- seq(from = @, to = 1, length.out = 1le3)

p_theta <- dbeta(x = p_grid, shapel = 3, shape2 = 10)

samples <- sample(x = p_grid, size = le4, replace = TRUE, prob = p_theta)

1
2
3
4
5
6
I
8

posterior_plot(samples = samples, credmass = 0.89)

| median = 0.216 |

0.05 89% HDI 0.39

0.0 02 04 0.6
samples
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Region of practical equivalence (ROPE)

Cette procédure permet d'accepter ou de rejeter une valeur nulle (null value). La région d'équivalence
pratigue ou region of practical equivalence (ROPE) définit un intervalle de valeurs qu’on considére
comment étant “équivalentes” a la valeur nulle. La figure ci-dessous résume les décisions possibles issues

de cette procédure (Kruschke, 2018).

a d

Decision: Reject Null Value Decision: Undecided

ROPE ROPE

| | HDI | HDI
1 I 1
Null Value Null Value
Parameter Value Parameter Value
b . e _. .
Decision: Accept Null Value Decision: Undecided
ROPE ROPE
| HDI I | HDI
]
Null Value Null Value
Parameter Value Parameter Value
C f
Decision: Accept Null Value Decision: Undecided
ROPE ROPE
| HDI I HDI I

1l

Null Value Null Value

Parameter Value Parameter Value
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Region of practical equivalence (ROPE)

La valeur du parameétre (e.g., 6 = 0.5) est rejetée si le HDI est entiérement hors de la ROPE. La valeur du
paramétre (e.g., 6 = 0.5) est acceptée si le HDI est entiérement dans la ROPE. Si le HDI et la ROPE se
chevauchent, on ne peut pas conclure...

1 posterior_plot(samples = samples, rope = c(0.49, 0.51) ) + labs(x = expression(theta) )

median = 0.216 |

(0.59% in ROPE |

0.05

0.0 0.2 0.4 06 08
0
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Comparaison de modeéles

On lance une piece 200 fois et on obtient 115 “Faces”. Est-ce que la piece est biaisée ? Nous construisons
deux modeles et essayons de savoir lequel rend le mieux compte des données.

{ O, :Y ~ Binomial(n,8 = 0.5) La piece n'est pas biaisée
O, : Y ~ Binomial(n, 8 # 0.5) La piece est biaisée
Le facteur de Bayes (Bayes factor) fait le rapport des vraisemblances (marginales) des deux modeles.

p@d , | data) _ p(data | O o) « p(d o)
p@ | data) p(data|0O ;) p@ ;)

Soit dans notre exemple:

p(data |0 ()  0.005955
p(data |0 ;)  0.004975

BFg = ~ 1.1971.

Le rapport de probabilités a augmenté de 20% en faveur de 0 ( aprés avoir pris connaissance des
données. Le facteur de Bayes peut également s'interpréter de la maniére suivante : Les données sont
environ 1.2 fois plus probables sous le modeéle O ( que sous le modele O .
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Model checking

Les deux roles de |la fonction de vraisemblance :

« C'est une fonction de 0 pour le calcul de la distribution postérieure : (6 | y, n)

e Lorsque B est connu / fixé, c’est une distribution de probabilité : p(y | 8,n) « &7(1 — 6)"Y

On peut utiliser cette distribution de probabilité pour générer des données... !

Par exemple : Générer 10.000 valeurs a partir d'une loi binomiale basée sur 10 lancers et une probabilité

de Face de 0.6:

1 samples <- rbinom(n = le4, size = 10, prob = 0.6)
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Model checking

Dans un modele bayésien, il existe deux sources d’'incertitude lorsqu'on géneére des prédictions:

e Incertitude liée au processus d'échantillonnage
-> On tire une donnée issue d'une distribution Binomiale

e Incertitude sur la valeur de 8 elle-méme
-> 'incertitude quant a la valeur de 6 est représentée par une distribution de probabilité (postérieure)

Par exemple : Générer 10000 valeurs a partir d'une loi binomiale basé sur 10 lancers et une probabilité de

Face décrite par la distribution postérieure de 6:

1 posterior <- rbeta(n = le4, shapel = 16, shape2 = 10)

2 samples <- rbinom(n = le4, size = 10, prob = posterior)
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Prior and posterior predictive checking

Prior distribution

rbeta(n = 1e4, shape1 =3, shape2 =7)

Prior predictive distribution
rbinom(n = 1e4, size =10, prob = prior)
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Posterior predictive checking

Posterior probability //—N

T

0
/ probablllt of water \
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distribution
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Travaux pratiques

Richard Robinson

Pourquoi la tartine
tombe toujours
du cété du beurre

La gcience
de la lai
de Murphy

DLINGD

Un analyste qui travaille dans une fabrique de célebres petits pains suédois a lu un livre qui soulevait une
épineuse gquestion... Pourquoi la tartine tombe toujours du cdté du beurre ? A défaut de proposer une
réponse plausible, il se propose de vérifier cette assertion. La premiere expérience qu'il réalise consiste a
faire tomber une tartine beurrée de la hauteur d'une table. Les résultats obtenus sont disponibles dans le

jeu de données tartinel du paquet imsb.
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Récupérer les données

Premiere tache : Récupérer les donées.

1
2 data <- open_data(tartinel)
3
4

5 str(data)

"data. frame': 500 obs. of 2 variables:
$ trial: int 1234567 89 10 ...
$side : int 1101001110 ...
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Questions

e Latartine n'ayant que deux faces, le résultat s'apparente a un tirage sur une |loi binomiale de
paramétre 8 inconnu. Quelle est la distribution postérieure du paramétre 6 au vu de ces données,
sachant que l'analyste n'avait aucun a priori (vous pouvez également utiliser vos propres connaissances
a priori).

e Calculer le HDI a 95% de la distribution postérieure et en donner une représentation graphique (indice :
utilisez la fonction imsb: :posterior_plot()).

o Peut-on rejeter I'nypothése nulle selon laquelle 8 = 0.5 ? Répondez a cette question en utilisant la
procédure HDI+ROPE.

e Importer les données tartine2 du paquet imsb. Mettre a jour le modele en utilisant le mode de |a
distribution postérieure calculée précédemment.
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Proposition de solution - Question 1

La tartine n'ayant que deux faces, le résultat s'apparente a un tirage sur une loi binomiale de paramétre 6
inconnu. Quelle est la distribution postérieure du paramétre 6 ?

nb_trial <- length(data$trial)
nb_success <- sum(data$side)

grid_size <- le4

1
2
3
4
5
6
I
8
9

e
)

p_grid <- seq(from = @, to = 1, length.out = grid_size)

N
A WN

prior <- rep(x = 1, times = grid_size)

o
N O Ul

likelihood <- dbinom(x = nb_success, size = nb_trial, prob = p_grid)

N 2
S O ™

posterior <- likelihood * prior / sum(likelihood * prior)
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Proposition de solution - Question 2

Calculer le HDI a 95% de la distribution postérieure et en donner une représentation graphique.

1 samples <- sample(x = p_grid, prob = posterior, size = le3, replace = TRUE)

2 posterior_plot(samples = samples, credmass = 0.95) + labs(x = expression(theta) )

[ median = 0.54 |
0.59
0.50 0.55 0.60
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Proposition de solution - Question 3

Peut-on rejeter I'hypothése nulle selon laguelle 8 = 0.5 ? Non, car le HDI recouvre partiellement la
ROPE...

1 posterior_plot(
samples = samples, credmass = 0.95,

compval = 0.5, rope = c(0.49, 0.51)
) + labs(x = expression(theta) )

| median = 0.54
(2.9% < 0.5 < 97.1%]
(8.1% in ROPE ]
| i 0.59
0.50 0.55 0.60

0
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Proposition de solution - Question 4

A ce stade, on ne peut pas conclure. L'analyste décide de relancer une série d'observations afin d'affiner
ses résultats.

1 data2 <- open_data(tartine?)
2 str(data2)

'data.frame': 100 obs. of 2 variables:
$ trial: int 1234567 89 10 ...
$side : int 0010011100 ...

1 nb_trial2 <- length(data2$trial)
2 nb_success?2 <- sum(dataz2$side)
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Proposition de solution - Question 4

On utilise le posterior précédent comme prior de ce nouveau modele.

1 model <- find_mode(samples)
2 prior2 <- dbeta(x = p_grid, shapel = model * (nb_trial - 2) + 1, shape2 = (1 - model) * (nb_trial - 2) +

data.frame(x = p_grid, y = prior2) %%
ggplot(aes(x = X, y = y) ) +
geom_area(alpha = 0.8, fill = "steelblue") +
geom_line(size = 0.8) +
labs(x = expression(theta), y = "Densité de probabilité")
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Proposition de solution - Question 4 (suite)

likelihood2 <- dbinom(x = nb_success2, size = nb_trial2, prob = p_grid)
posterior2 <- likelihood2 * prior2 / sum(likelihood2 * prior2)
samples2 <- sample(p_grid, prob = posterior?2, size = le4, replace = TRUE)

posterior_plot(
samples = samples2, credmass = 0.95,
compval = 0.5, rope = c(0.49, 0.51)
) + labs(x = expression(theta) )

[median = 0.544
[1.69% < 0.5 < 98.31%]
(4.64% in ROPE
' (05] | 0.58
050 0.55 0.60
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