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Planning
Cours n°01 : Introduction à l’inférence bayésienne
Cours n°02 : Modèle Beta-Binomial
Cours n°03 : Introduction à brms, modèle de régression linéaire
Cours n°04 : Modèle de régression linéaire (suite)
Cours n°05 : Markov Chain Monte Carlo
Cours n°06 : Modèle linéaire généralisé
Cours n°07 : Comparaison de modèles
Cours n°08 : Modèles multi-niveaux (généralisés)
Cours n°09 : Examen final
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Rappels
Principes de l’analyse bayésienne :

On dispose d’un ensemble de données à analyser

On suppose un modèle génératif défini par un ensemble de paramètres

On dispose d’une connaissance a priori quant à la valeur de ces paramètres

The first idea is that Bayesian inference is reallocation of credibility across possibilities. The
second foundational idea is that the possibilities, over which we allocate credibility, are
parameter values in meaningful mathematical models ( ).

“
Kruschke, 2015
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Rappels
Inférence bayésienne : On infère (ou plutôt on déduit) la probabilité que le paramètre ait telle ou telle
valeur sachant les données (et le prior) via le théorème de Bayes.

𝑝(𝜃 | 𝑦) = ∝ 𝑝(𝑦 | 𝜃) 𝑝(𝜃)
𝑝(𝑦 | 𝜃) 𝑝(𝜃)

𝑝(𝑦)

Objectif de l’analyse de données bayésienne : Faire évoluer une connaissance a priori sur les paramètres
 en une connaissance a posteriori , intégrant l’information contenue dans les données via

.
𝑝(𝜃) 𝑝(𝜃 | 𝑦)
𝑝(𝑦 | 𝜃)
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Rappels
Les étapes de l’analyse de données bayésienne :

1. Définir le modèle - Identifier les paramètres du modèle génératif, définir une distribution a priori pour
ces paramètres.

2. Mettre à jour le modèle - Calculer la distribution a posteriori des paramètres (ou une bonne
approximation).

3. Interpréter la distribution postérieure - Comparaison de modèles, estimation des paramètres,
vérification des prédictions du modèle.

Objectif du cours : Illustrer les différentes étapes de cette démarche à l’aide d’un modèle simple (un seul
paramètre), le modèle Beta-Binomial.
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Le modèle Beta-Binomial
Pourquoi ce modèle ?

Le modèle Beta-Binomial couvre de nombreux problèmes de la vie courante :

Réussite / échec à un test

Présence / absence d’effets secondaires lors du test d’un médicament

C’est un modèle simple

Un seul paramètre

Solution analytique
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Loi de Bernoulli
S’applique à toutes les situations où le processus de génération des données ne peut résulter qu’en deux
issues mutuellement exclusives (e.g., un lancer de pièce). À chaque essai, si on admet que ,
alors .

Pr(face) = 𝜃
Pr(pile) = 1 − 𝜃

Depuis Bernoulli, on sait calculer la probabilité du résultat d’un lancer de pièce, du moment que l’on
connait le biais de la pièce . Admettons que  lorsqu’on obtient pile, et que  lorsqu’on obtient
face. Alors  est distribuée selon une loi de Bernoulli :

𝜃 𝑌 = 0 𝑌 = 1
𝑌

𝑝(𝑦 | 𝜃) = Pr(𝑌 = 𝑦 | 𝜃) = (1 − 𝜃𝜃𝑦 )(1−𝑦)

En remplaçant  par  ou , on retombe bien sur nos observations précédentes :𝑦 0 1

Pr(𝑌 = 1 | 𝜃) = (1 − 𝜃 = 𝜃 × 1 = 𝜃𝜃1 )(1−1)

Pr(𝑌 = 0 | 𝜃) = (1 − 𝜃 = 1 × (1 − 𝜃) = 1 − 𝜃𝜃0 )(1−0)
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Schéma de Bernoulli
Si l’on dispose d’une suite de lancers  indépendants et identiquement distribués (i.e., chaque lancer
a une distribution de Bernoulli de probabilité ), l’ensemble de ces lancers peut être décrit par une
distribution binomiale.

{ }𝑌𝑖
𝜃

Par exemple, imaginons que l’on dispose de la séquence de cinq lancers suivants : Pile, Pile, Pile, Face,
Face. On peut recoder cette séquence en .

Rappel : La probabilité de chaque  est  est la probabilité de chaque  est .

Quelle est la probabilité d’obtenir 2 faces sur 5 lancers ?

{0, 0, 0, 1, 1}

1 𝜃 0 1 − 𝜃
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Schéma de Bernoulli
Sachant que les essais sont indépendants les uns des autres, la probabilité d’obtenir cette séquence est
de , c’est à dire : .(1 − 𝜃) × (1 − 𝜃) × (1 − 𝜃) × 𝜃 × 𝜃 (1 − 𝜃𝜃2 )3

On peut généraliser ce résultat pour une séquence de  lancers et  “succès” :𝑛 𝑦

(1 − 𝜃𝜃𝑦 )𝑛−𝑦

On a jusqu’ici considéré seulement une seule séquence résultant en 2 succès pour 5 lancers, mais il
existe de nombreuses séquences pouvant résulter en 2 succès pour 5 lancers (e.g., ,

)…
{0, 0, 1, 0, 1}

{0, 1, 1, 0, 0}
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Coefficient binomial
Le coefficient binomial nous permet de calculer le nombre de combinaisons possibles résultant en 
succès pour  lancers de la manière suivante (lu “  parmi ” ou “nombre de combinaisons de  parmi

”)  :

𝑦
𝑛 𝑦 𝑛 𝑦

𝑛 1

( ) = =𝑛

𝑦
𝐶 𝑛

𝑦
𝑛!

𝑦!(𝑛 − 𝑦)!

Par exemple pour  et , on sait qu’il existe 3 combinaisons possibles :
. On peut vérifier ça par le calcul, en appliquant la formule ci-dessus.

𝑦 = 1 𝑛 = 3
{0, 0, 1}, {0, 1, 0}, {1, 0, 0}

( ) = = = = = 33
1

𝐶 3
1

3!
1!(3 − 1)!

3 × 2 × 1
1 × 2 × 1

6
2

# computing the total number of possible configurations in R1
choose(n = 3, k = 1)2

[1] 3

1. La fonction factorielle notée  associe à tout entier naturel  l’entier :𝑛! 𝑛

𝑁! = 𝑁 × (𝑁 − 1) × (𝑁 − 2) × … × 3 × 2 × 1
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Loi binomiale

La loi binomiale nous permet de calculer la probabilité d’obtenir  succès sur  essais, pour un  donné.
Exemple de la distribution binomiale pour une pièce non biaisée ( ), indiquant la probabilité
d’obtenir  faces sur 10 lancers (en R: dbinom(x = 0:10, size = 10, prob = 0.5)).

𝑝(𝑦 | 𝜃) = Pr(𝑌 = 𝑦 | 𝜃) = ( ) (1 − 𝜃𝑛

𝑦
𝜃𝑦 )𝑛−𝑦

𝑦 𝑛 𝜃

𝜃 = 0.5
𝑛
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Générer des données à partir d’une distribution binomiale
library(tidyverse)1
set.seed(666) # for reproducibility2

3
sample(x = c(0, 1), size = 500, prob = c(0.4, 0.6), replace = TRUE) %>% # theta = 0.64
        data.frame() %>%5
        mutate(x = seq_along(.), y = cummean(.) ) %>%6
        ggplot(aes(x = x, y = y) ) +7
        geom_line(lwd = 1) +8
        geom_hline(yintercept = 0.6, lty = 3) +9
        labs(x = "Nombre de lancers", y = "Proportion de faces") +10
        ylim(0, 1)11
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Définition du modèle (likelihood)
Fonction de vraisemblance (likelihood)

Nous considérons  comme étant le nombre de succès𝑦

Nous considérons le nombre d’observations  comme étant une constante𝑛

Nous considérons  comme étant le paramètre de notre modèle (i.e., la probabilité de succès)𝜃

La fonction de vraisemblance s’écrit de la manière suivante :

�(𝜃 | 𝑦, 𝑛) = 𝑝(𝑦 | 𝜃, 𝑛) = ( ) (1 − 𝜃 ∝ (1 − 𝜃𝑛

𝑦
𝜃𝑦 )𝑛−𝑦 𝜃𝑦 )𝑛−𝑦
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Vraisemblance versus probabilité
On lance à nouveau une pièce de biais  (où  représente la probabilité d’obtenir Face). On lance cette
pièce deux fois et on obtient une Face et un Pile.

𝜃 𝜃

On peut calculer la probabilité d’observer une Face sur deux lancers de pièce en fonction de différentes
valeurs de  de la manière suivante :𝜃

Pr(𝐹 , 𝑃 | 𝜃) + Pr(𝑃 , 𝐹 | 𝜃) = 2 × Pr(𝑃 | 𝜃) × Pr(𝐹 | 𝜃)
= 𝜃(1 − 𝜃) + 𝜃(1 − 𝜃)
= 2𝜃(1 − 𝜃)

Cette probabilité est définie pour un jeu de données fixe et une valeur de  variable. On peut représenter
cette fonction visuellement.

𝜃
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Vraisemblance versus probabilité
# Représentation graphique de la fonction de vraisemblance de theta pour y = 1 et n = 21

2
y <- 1 # nombre de faces3
n <- 2 # nombre d'essais4

5
data.frame(theta = seq(from = 0, to = 1, length.out = 1e3) ) %>%6
  mutate(likelihood = dbinom(x = y, size = n, prob = theta) ) %>%7
  ggplot(aes(x = theta, y = likelihood) ) +8
  geom_area(color = "orangered", fill = "orangered", alpha = 0.5) +9
  labs(x = expression(paste(theta, " - Pr(face)") ), y = "Vraisemblance (likelihood)")10
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Vraisemblance versus probabilité
Si on calcule l’aire sous la courbe de cette fonction, on obtient :

2𝜃(1 − 𝜃)d𝜃 =∫
1

0

1
3

f <- function(theta) {2 * theta * (1 - theta) }1
integrate(f = f, lower = 0, upper = 1)2

0.3333333 with absolute error < 3.7e-15

Quand on varie , la fonction de vraisemblance n’est pas une distribution de probabilité valide (i.e., son
intégrale n’est pas égale à 1). On utilise le terme de vraisemblance, pour distinguer ce type de fonction
des fonctions de densité de probabilité. On utilise la notation suivante pour mettre l’accent sur le fait que
la fonction de vraisemblance est une fonction de , et que les données sont fixes :

.

𝜃

𝜃

�(𝜃 | data) = 𝑝(data | 𝜃)

16

Ladislas Nalborczyk - IMSB2026

http://127.0.0.1:6071/cours02.html?print-pdf
http://127.0.0.1:6071/cours02.html?print-pdf
http://127.0.0.1:6071/cours02.html?print-pdf
http://127.0.0.1:6071/cours02.html?print-pdf
http://127.0.0.1:6071/cours02.html?print-pdf
http://127.0.0.1:6071/cours02.html?print-pdf


Vraisemblance versus probabilité
Vraisemblance versus probabilité

pour deux lancers de pièce

Nombre de Faces (y)

theta 0 1 2 Total

0 1.00 0.00 0.00 1

0.2 0.64 0.32 0.04 1

0.4 0.36 0.48 0.16 1

0.6 0.16 0.48 0.36 1

0.8 0.04 0.32 0.64 1

1 0.00 0.00 1.00 1

Total 2.20 1.60 2.20

Notons que la vraisemblance de  pour une donnée particulière est égale à la probabilité de cette
donnée pour cette valeur de . Cependant, la distribution de ces vraisemblances (en colonne) n’est pas
une distribution de probabilité. Dans l’analyse bayésienne, les données sont considérées comme fixes
et la valeur de  est considérée comme une variable aléatoire.

𝜃

𝜃

𝜃
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Définition du modèle (prior)
Comment définir un prior dans le cas du lancer de pièce ?

Aspect sémantique  le prior doit pouvoir rendre compte :  →  

D’une absence d’information

D’une connaissance d’observations antérieures concernant la pièce étudiée

D’un niveau d’incertitude concernant ces observations antérieures

Aspect mathématique  pour une solution entièrement analytique :  →  

Les distributions a priori et a posteriori doivent avoir la même forme

La vraisemblance marginale doit pouvoir se calculer analytiquement
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La distribution Beta

où  et  sont deux paramètres tels que , , et  est une constante de normalisation.

𝑝(𝜃 | 𝑎, 𝑏) = Beta(𝜃 | 𝑎, 𝑏)
= (1 − 𝜃 /𝐵(𝑎, 𝑏)𝜃𝑎−1 )𝑏−1

∝ (1 − 𝜃𝜃𝑎−1 )𝑏−1

𝑎 𝑏 𝑎 ≥ 0 𝑏 ≥ 0 𝐵(𝑎, 𝑏)
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Interprétation des paramètres du prior Beta
On peut exprimer l’absence de connaissance a priori par  (distribution orange).𝑎 = 𝑏 = 1
On peut exprimer un prior en faveur d’une absence de biais par  (distribution verte).𝑎 = 𝑏 ≥ 2
On peut exprimer un biais en faveur de Face par  (distribution bleue).𝑎 > 𝑏
On peut exprimer un biais en faveur de Pile par  (distribution violette).𝑎 < 𝑏
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Interprétation des paramètres du prior Beta
Le niveau de certitude augmente avec la somme .𝜅 = 𝑎 + 𝑏

Aucune idée sur la provenance de la pièce :  -> prior plat.𝑎 = 𝑏 = 1
En attendant le début de l’expérience, on a lancé la pièce 10 fois et observé 5 “Face” :  -> prior
peu informatif.

𝑎 = 𝑏 = 5

La pièce provient de la banque de France :  -> prior fort.𝑎 = 𝑏 = 50
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Interprétation des paramètres du prior Beta
Supposons que l’on dispose d’une estimation de la valeur la plus probable  du paramètre . On peut
reparamétriser la distribution Beta en fonction du mode  et du niveau de certitude  :

𝜔 𝜃

𝜔 𝜅

𝑎

𝑏

= 𝜔(𝜅 − 2) + 1
= (1 − 𝜔)(𝜅 − 2) + 1 pour 𝜅 > 2

Si  et  alors .
Si  et  alors .
𝜔 = 0.65 𝜅 = 25 𝑝(𝜃) = Beta(𝜃 | 15.95, 9.05)
𝜔 = 0.65 𝜅 = 10 𝑝(𝜃) = Beta(𝜃 | 6.2, 3.8)
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Prior conjugué
Formellement, si  est une classe de distributions d’échantillonnage , et  est une classe de
distributions a priori pour , alors  est conjuguée à  si et seulement si :

(p.35, ). En d’autres termes, un prior est appelé conjugué si, lorsqu’il est converti en
une distribution a posteriori en étant multiplié par la fonction de vraisemblance, il conserve la même
forme. Dans notre cas, le prior Beta est un prior conjugué pour la vraisemblance binomiale, car le
posterior est également une distribution Beta.

 𝑝(𝑦|𝜃) 
𝜃  

𝑝(𝜃 | 𝑦) ∈  for all 𝑝(⋅ | 𝜃) ∈  and 𝑝(⋅) ∈ 

Gelman et al., 2013

Le résultat du produit d’un prior Beta et d’une fonction de vraisemblance Binomiale est
proportionnel à une distribution Beta. On dit que la distribution Beta est un prior conjugué
de la fonction de vraisemblance Binomiale.

“
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Dérivation analytique de la distribution a posteriori
Soit un prior défini par :  𝑝(𝜃 | 𝑎, 𝑏) = Beta(𝑎, 𝑏) = ∝ (1 − 𝜃(1−𝜃𝜃𝑎−1 )𝑏−1

𝐵(𝑎,𝑏) 𝜃𝑎−1 )𝑏−1

Soit une fonction de vraisemblance associée à  “Face” pour  lancers :𝑦 𝑛

 𝑝(𝑦 | 𝑛, 𝜃) = Bin(𝑦 | 𝑛, 𝜃) = ( ) (1 − 𝜃 ∝ (1 − 𝜃𝑛

𝑦
𝜃𝑦 )𝑛−𝑦 𝜃𝑦 )𝑛−𝑦

Alors (en omettant les constantes de normalisation) :

𝑝(𝜃 | 𝑦, 𝑛) ∝ 𝑝(𝑦 | 𝑛, 𝜃) 𝑝(𝜃)
∝ Bin(𝑦 | 𝑛, 𝜃) Beta(𝜃 | 𝑎, 𝑏)
∝ (1 − 𝜃   (1 − 𝜃𝜃𝑦 )𝑛−𝑦 𝜃𝑎−1 )𝑏−1

∝ 𝜃𝑦+𝑎−1 (1 − 𝜃)𝑛−𝑦+𝑏−1

Théorème de Bayes

Application des formules précédentes
En regroupant les puissances des termes identiques

Ici, on a ignoré les constantes qui ne dépendent pas de  (i.e., le nombre de combinaisons dans la
fonction de vraisemblance binomiale et la fonction Beta  dans le prior Beta).  En les prenant en
compte, on obtient en effet une distribution a posteriori Beta de la forme suivante :

𝜃

𝐵(𝑎, 𝑏) 1

𝑝(𝜃 | 𝑦, 𝑛) = Beta(𝑦 + 𝑎, 𝑛 − 𝑦 + 𝑏)
1. Pour la dérivation complète, voir par exemple .ce chapitre
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Un exemple pour digérer
On observe  réponses correctes sur  questions. On choisit un prior , c’est à dire un
prior uniforme sur . Ce prior équivaut à une connaissance a priori de 0 succès et 0 échecs (i.e., prior
plat).

𝑦 = 7 𝑛 = 10 Beta(1, 1)
[0, 1]

La distribution postérieure est donnée par :

𝑝(𝜃 | 𝑦, 𝑛) ∝ 𝑝(𝑦 | 𝑛, 𝜃) 𝑝(𝜃)
∝ Bin(7 | 10, 𝜃) Beta(𝜃 | 1, 1)
= Beta(𝑦 + 𝑎, 𝑛 − 𝑦 + 𝑏)
= Beta(8, 4)

La moyenne de la distribution postérieure est donnée par :

= +𝑦 + 𝑎
𝑛 + 𝑎 + 𝑏  

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝑦

𝑛
⏟𝑑𝑎𝑡𝑎

𝑛

𝑛 + 𝑎 + 𝑏  
𝑤𝑒𝑖𝑔ℎ𝑡

𝑎

𝑎 + 𝑏
⏟𝑝𝑟𝑖𝑜𝑟

𝑎 + 𝑏
𝑛 + 𝑎 + 𝑏  

𝑤𝑒𝑖𝑔ℎ𝑡
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Un exemple pour digérer
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Influence du prior sur la distribution postérieure
Cas .𝑛 < 𝑎 + 𝑏, (𝑛 = 10, 𝑎 = 4, 𝑏 = 16)
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Influence du prior sur la distribution postérieure
Cas .𝑛 = 𝑎 + 𝑏, (𝑛 = 20, 𝑎 = 4, 𝑏 = 16)
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Influence du prior sur la distribution postérieure
Cas .𝑛 > 𝑎 + 𝑏, (𝑛 = 40, 𝑎 = 4, 𝑏 = 16)
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Ce qu’il faut retenir

The posterior distribution is always a compromise between the prior distribution and the
likelihood function ( ).“ Kruschke, 2015
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Ce qu’il faut retenir
Plus on a de données, moins le prior a d’influence dans l’estimation de la distribution a posteriori (et
réciproquement). Attention : Lorsque le prior accorde une probabilité de 0 à certaines valeurs de , le
modèle est incapable d’apprendre (ces valeurs sont alors considérées comme “impossibles”)…

𝜃
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La vraisemblance marginale

Posterior = ∝ Likelihood × Prior
Likelihood × Prior
Marginal likelihood

𝑝(𝜃 | data) = ∝ 𝑝(data | 𝜃) × 𝑝(𝜃)𝑝(data | 𝜃) ×  𝑝(𝜃)
𝑝(data)

Si on zoom sur la vraisemblance marginale (aussi connue comme evidence)…

𝑝(data)

𝑝(data)

= ∫ 𝑝(data, 𝜃) d𝜃

= ∫ 𝑝(data | 𝜃) × 𝑝(𝜃) d𝜃

Marginalisation sur le paramètre 𝜃

Application de la règle du produit

32

Ladislas Nalborczyk - IMSB2026



La vraisemblance marginale
Petit problème :  s’obtient en calculant la somme (pour des variables discrètes) ou l’intégrale
(pour des variables continues) de la densité conjointe  sur toutes les valeurs possibles de . Cela
se complique lorsque le modèle comprend plusieurs paramètres continus…

𝑝(data)
𝑝(data, 𝜃) 𝜃

Par exemple pour deux paramètres discrets :

𝑝(data) = 𝑝(data, , )∑
𝜃1

∑
𝜃2

𝜃1 𝜃2

Et pour un modèle avec deux paramètres continus :

𝑝(data) = 𝑝(data, , )d d∫
𝜃1

∫
𝜃2

𝜃1 𝜃2 𝜃1 𝜃2
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La vraisemblance marginale
Trois méthodes pour résoudre (contourner) ce problème :

Solution analytique  Utilisation d’un prior conjugué (e.g., le modèle Beta-Binomial).⟶

Solution discrétisée  Calcul de la solution sur un ensemble fini de points (grid method).⟶

Solution approchée  On échantillonne “intelligemment” l’espace conjoint des paramètres (e.g.,
méthodes MCMC, Cours n°05).

⟶
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Distributions discrètes
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Distributions continues

Problème : Cette solution est très contraignante. Idéalement, le modèle (likelihood + prior) devrait être
défini à partir de l’interprétation que l’on peut faire des paramètres de ces distributions, et non pour
faciliter les calculs…
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La distribution postérieure, grid method
Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation
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La distribution postérieure, grid method
Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation
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La distribution postérieure, grid method
Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation
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La distribution postérieure, grid method
Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation
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La distribution postérieure, grid method
Définir la grille

Calculer la valeur du prior pour chaque valeur de la grille

Calculer la valeur de la vraisemblance pour chaque valeur de la grille

Calculer le produit prior x vraisemblance pour chaque valeur de la grille, puis normalisation
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La distribution postérieure, grid method
Problème du nombre de paramètres… En affinant la grille, le coût computationnel explose :

3 paramètres avec une grille de  noeuds =  points de calcul103 109

10 paramètres avec une grille de  noeuds =  points de calcul103 1030

Même avec , le superordinateur le plus rapide actuellement opérationnel (
opérations par seconde) :

El Capitan ≈ 1.7 − 2.8 × 1018

En supposant 10 opérations par point de grille

Nombre total d’opérations : × 10 =1030 1031

Temps nécessaire : , soit  ans pour une seule passe complète

de la grille…
≈ 3.6 ×  secondes 1031

2.8×1018
1012 ≈ 115 000
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Échantillonner la distribution postérieure
Pour échantillonner (de manière intelligente) une distribution postérieure, on peut utiliser différentes
implémentations des méthodes MCMC (e.g., Metropolis-Hastings, Hamiltonian Monte Carlo) que l’on
discutera au Cours n°05. En attendant, on va travailler avec des échantillons de la distribution postérieure
i) pour s’habituer en préparation aux méthodes MCMC et ii) car c’est plus simple de calculer une
moyenne ou un intervalle de crédibilité sur des échantillons plutôt qu’en calculant des intégrales.

p_grid <- seq(from = 0, to = 1, length.out = 1000) # creates a grid1
prior <- rep(1, 1000) # uniform prior2
likelihood <- dbinom(x = 12, size = 20, prob = p_grid) # computes likelihood3
posterior <- (likelihood * prior) / sum(likelihood * prior) # computes posterior4
samples <- sample(x = p_grid, size = 1e3, prob = posterior, replace = TRUE) # sampling5
hist(samples, main = "", xlab = expression(theta) ) # histogram6
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La distribution postérieure, résumé
Cas analytique :

a <- b <- 1 # paramètres du prior Beta1
n <- 9 # nombre d'observations2
y <- 6 # nombre de succès3
p_grid <- seq(from = 0, to = 1, length.out = 1000)4
posterior <- dbeta(p_grid, y + a, n - y + b) # plot(posterior)5

Grid method :

p_grid <- seq(from = 0, to = 1, length.out = 1000)1
prior <- rep(1, 1000) # uniform prior2
likelihood <- dbinom(x = y, size = n, prob = p_grid)3
posterior <- (likelihood * prior) / sum(likelihood * prior) # plot(posterior)4

Échantillonner la distribution postérieure pour la décrire :

samples <- sample(x = p_grid, size = 1e4, prob = posterior, replace = TRUE) # hist(samples)1
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La distribution postérieure, résumé
Méthode analytique

La distribution postérieure est décrite explicitement

Le modèle est fortement contraint

Méthode sur grille

La distribution postérieure n’est donnée que pour un ensemble fini de valeurs

Plus la grille est fine, meilleure est l’estimation de la distribution postérieure

Compromis “Précision - Temps de calcul”
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Utiliser les échantillons pour résumer la distribution
postérieure
Estimation de la tendance centrale : À partir d’un ensemble d’échantillons d’une distribution postérieure,
on peut calculer la moyenne, le mode, et la médiane. Par exemple pour un prior uniforme, 10 lancers, et 3
Faces.

mode_posterior <- find_mode(samples) # en bleu1
mean_posterior <- mean(samples) # en orange2
median_posterior <- median(samples) # en vert3
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Utiliser les échantillons pour résumer la distribution
postérieure
Quelle est la probabilité que le biais de la pièce  soit supérieur à 0.5 ?𝜃

sum(samples > 0.5) / length(samples) # équivalent à mean(samples > 0.5)1

[1] 0.112

Quelle est la probabilité que le biais de la pièce  soit compris entre 0.2 et 0.4 ?𝜃

sum(samples > 0.2 & samples < 0.4) / length(samples)1

[1] 0.5482
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Highest density interval (HDI)
Highest density interval (HDI) :

Le HDI indique les valeurs du paramètre qui sont les plus probables (sachant les données et le prior)

Plus le HDI est étroit et plus le degré de certitude est élevé

La largeur du HDI diminue avec l’augmentation du nombre de mesures

Définition : les valeurs du paramètre  contenues dans un HDI à % sont telles que
 où  est un “seuil” qui satisfait la condition suivante :“ 𝜃 100(1 − 𝛼)

𝑝(𝜃) > 𝑆 𝑆

𝑝(𝜃) d𝜃 = 1 − 𝛼.∫𝜃 : 𝑝(𝜃)>𝑆

48

Ladislas Nalborczyk - IMSB2026



Highest density interval (HDI)
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Highest density interval (HDI)
library(imsb)1

2
set.seed(666)3
p_grid <- seq(from = 0, to = 1, length.out = 1e3)4
p_theta <- dbeta(x = p_grid, shape1 = 3, shape2 = 10)5
samples <- sample(x = p_grid, size = 1e4, replace = TRUE, prob = p_theta)6

7
posterior_plot(samples = samples, credmass = 0.89)8
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Region of practical equivalence (ROPE)
Cette procédure permet d’accepter ou de rejeter une valeur nulle (null value). La région d’équivalence
pratique ou region of practical equivalence (ROPE) définit un intervalle de valeurs qu’on considère
comment étant “équivalentes” à la valeur nulle. La figure ci-dessous résume les décisions possibles issues
de cette procédure ( ).Kruschke, 2018
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Region of practical equivalence (ROPE)
La valeur du paramètre (e.g., ) est rejetée si le HDI est entièrement hors de la ROPE. La valeur du
paramètre (e.g., ) est acceptée si le HDI est entièrement dans la ROPE. Si le HDI et la ROPE se
chevauchent, on ne peut pas conclure…

𝜃 = 0.5
𝜃 = 0.5

posterior_plot(samples = samples, rope = c(0.49, 0.51) ) + labs(x = expression(theta) )1
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Comparaison de modèles
On lance une pièce 200 fois et on obtient 115 “Faces”. Est-ce que la pièce est biaisée ? Nous construisons
deux modèles et essayons de savoir lequel rend le mieux compte des données.

{
: 𝑌 ∼ Binomial(𝑛, 𝜃 = 0.5) 0

: 𝑌 ∼ Binomial(𝑛, 𝜃 ≠ 0.5) 1

La pièce n'est pas biaisée
La pièce est biaisée

Le facteur de Bayes (Bayes factor) fait le rapport des vraisemblances (marginales) des deux modèles.

= ×
𝑝( | data) 0

𝑝( | data) 1

𝑝(data | ) 0

𝑝(data | ) 1

𝑝( ) 0

𝑝( ) 1

Soit dans notre exemple :

Le rapport de probabilités a augmenté de 20% en faveur de  après avoir pris connaissance des
données. Le facteur de Bayes peut également s’interpréter de la manière suivante : Les données sont
environ 1.2 fois plus probables sous le modèle  que sous le modèle .

= = ≈ 1.1971.BF01
𝑝(data | ) 0
𝑝(data | ) 1

0.005955
0.004975

 0

 0  1
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Model checking
Les deux rôles de la fonction de vraisemblance :

C’est une fonction de  pour le calcul de la distribution postérieure : 𝜃 �(𝜃 | 𝑦, 𝑛)
Lorsque  est connu / fixé, c’est une distribution de probabilité : 𝜃 𝑝(𝑦 | 𝜃, 𝑛) ∝ (1 − 𝜃𝜃𝑦 )(𝑛−𝑦)

On peut utiliser cette distribution de probabilité pour générer des données… !

Par exemple : Générer 10.000 valeurs à partir d’une loi binomiale basée sur 10 lancers et une probabilité
de Face de 0.6 :

samples <- rbinom(n = 1e4, size = 10, prob = 0.6)1
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Model checking
Dans un modèle bayésien, il existe deux sources d’incertitude lorsqu’on génère des prédictions :

Incertitude liée au processus d’échantillonnage
-> On tire une donnée issue d’une distribution Binomiale

Incertitude sur la valeur de  elle-même
-> L’incertitude quant à la valeur de  est représentée par une distribution de probabilité (postérieure)

𝜃

𝜃

Par exemple : Générer 10000 valeurs à partir d’une loi binomiale basé sur 10 lancers et une probabilité de
Face décrite par la distribution postérieure de  :𝜃

posterior <- rbeta(n = 1e4, shape1 = 16, shape2 = 10)1
samples <- rbinom(n = 1e4, size = 10, prob = posterior)2
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Prior and posterior predictive checking
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Posterior predictive checking
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Travaux pratiques

Un analyste qui travaille dans une fabrique de célèbres petits pains suédois a lu un livre qui soulevait une
épineuse question… Pourquoi la tartine tombe toujours du côté du beurre ? À défaut de proposer une
réponse plausible, il se propose de vérifier cette assertion. La première expérience qu’il réalise consiste à
faire tomber une tartine beurrée de la hauteur d’une table. Les résultats obtenus sont disponibles dans le
jeu de données tartine1 du paquet imsb.
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Récupérer les données
Première tâche : Récupérer les donées.

# importer les données1
data <- open_data(tartine1)2

3
# description sommaire des données4
str(data)5

'data.frame':   500 obs. of  2 variables:
 $ trial: int  1 2 3 4 5 6 7 8 9 10 ...
 $ side : int  1 1 0 1 0 0 1 1 1 0 ...
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Questions
La tartine n’ayant que deux faces, le résultat s’apparente à un tirage sur une loi binomiale de
paramètre  inconnu. Quelle est la distribution postérieure du paramètre  au vu de ces données,
sachant que l’analyste n’avait aucun a priori (vous pouvez également utiliser vos propres connaissances
a priori).

Calculer le HDI à 95% de la distribution postérieure et en donner une représentation graphique (indice :
utilisez la fonction imsb::posterior_plot()).

Peut-on rejeter l’hypothèse nulle selon laquelle  ? Répondez à cette question en utilisant la
procédure HDI+ROPE.

Importer les données tartine2 du paquet imsb. Mettre à jour le modèle en utilisant le mode de la
distribution postérieure calculée précédemment.

𝜃 𝜃

𝜃 = 0.5
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Proposition de solution - Question 1
La tartine n’ayant que deux faces, le résultat s’apparente à un tirage sur une loi binomiale de paramètre 
inconnu. Quelle est la distribution postérieure du paramètre  ?

𝜃

𝜃

# nombre d'essais1
nb_trial <- length(data$trial)2

3
# nombre de "succès" (i.e., la tartine tombe du côté du beurre)4
nb_success <- sum(data$side)5

6
# taille de la grille7
grid_size <- 1e48

9
# génère la grille10
p_grid <- seq(from = 0, to = 1, length.out = grid_size)11

12
# prior uniforme13
prior <- rep(x = 1, times = grid_size)14

15
# calcul de la vraisemblance16
likelihood <- dbinom(x = nb_success, size = nb_trial, prob = p_grid)17

18
# calcul du posterior19
posterior <- likelihood * prior / sum(likelihood * prior)20
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Proposition de solution - Question 2
Calculer le HDI à 95% de la distribution postérieure et en donner une représentation graphique.

samples <- sample(x = p_grid, prob = posterior, size = 1e3, replace = TRUE)1
posterior_plot(samples = samples, credmass = 0.95) + labs(x = expression(theta) )2
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Proposition de solution - Question 3
Peut-on rejeter l’hypothèse nulle selon laquelle  ? Non, car le HDI recouvre partiellement la
ROPE…

𝜃 = 0.5

posterior_plot(1
  samples = samples, credmass = 0.95,2
  compval = 0.5, rope = c(0.49, 0.51)3
  ) + labs(x = expression(theta) )4
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Proposition de solution - Question 4
À ce stade, on ne peut pas conclure. L’analyste décide de relancer une série d’observations afin d’affiner
ses résultats.

data2 <- open_data(tartine2)1
str(data2)2

'data.frame':   100 obs. of  2 variables:
 $ trial: int  1 2 3 4 5 6 7 8 9 10 ...
 $ side : int  0 0 1 0 0 1 1 1 0 0 ...

nb_trial2 <- length(data2$trial) # nombre d'essais1
nb_success2 <- sum(data2$side) # nombre de succès2
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Proposition de solution - Question 4
On utilise le posterior précédent comme prior de ce nouveau modèle.

mode1 <- find_mode(samples)1
prior2 <- dbeta(x = p_grid, shape1 = mode1 * (nb_trial - 2) + 1, shape2 = (1 - mode1) * (nb_trial - 2) + 2

3
data.frame(x = p_grid, y = prior2) %>%4
  ggplot(aes(x = x, y = y) ) +5
  geom_area(alpha = 0.8, fill = "steelblue") +6
  geom_line(size = 0.8) +7
  labs(x = expression(theta), y = "Densité de probabilité")8
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Proposition de solution - Question 4 (suite)
likelihood2 <- dbinom(x = nb_success2, size = nb_trial2, prob = p_grid)1
posterior2 <- likelihood2 * prior2 / sum(likelihood2 * prior2)2
samples2 <- sample(p_grid, prob = posterior2, size = 1e4, replace = TRUE)3

4
posterior_plot(5
  samples = samples2, credmass = 0.95,6
  compval = 0.5, rope = c(0.49, 0.51)7
  ) + labs(x = expression(theta) )8
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