Introduction a la modélisation
statistique bayésienne
Un cours en R et Stan avec brms
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Planning

Cours n°01: Introduction a l'inférence bayésienne

Cours Nn°02 : Modele Beta-Binomial

Cours Nn°03 : Introduction a brms, modele de régression linéaire
Cours Nn°04 : Modele de régression linéaire (suite)

Cours n°05 : Markov Chain Monte Carlo

Cours n°06 : Modele linéaire généralisé

Cours Nn°07 : Comparaison de modeles

Cours N°08 : Modeles multi-niveaux (généralisés)

Cours n°09 : Examen final
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Rappels de notation

La notation p(y | ©) peut faire référence a deux choses selon le contexte : la fonction de vraisemblance et
le modele d'observation. De plus, on trouve de nombreuses notations ambigues en statistique. Essayons
de clarifier ci-dessous.

Pr(Y = y | © = 0) désigne une probabilité (e.g., dbinom(x = 2, size = 10, prob = 0.5)).

p(Y =y | © = 0) désigne une densité de probabilité (e.g., dbeta(x = 0.4, shapel = 2, shape2 = 3)).

p(Y =y | ®) désigne une fonction de vraisemblance (likelihood) discréte ou continue, y est connu/fixé,
® est une variable aléatoire, la somme (ou I'intégrale) de cette distribution n'est pas égale a1l (e.g.,
dbinom(x = 2, size = 10, prob = seq(@, 1, 0.1) )).

p(Y | ©® = 0) désigne une fonction de masse (ou densité) de probabilité (dont la somnme ou 'intégrale
est égale a 1), gu'on appelle aussi “modeéle d'observation” (observation model) ou “distribution
d'échantillonnage” (sampling distribution), Y est une variable aléatoire, 6 est connu/fixé (e.g., dbinom(x
= 0:10, size = 10, prob = 0.5))

Le but de I'analyse bayésienne (i.e., ce qu'on obtient a la fin d'une telle analyse) est la distribution
postérieure p(0 | y). On peut la résumer pour faciliter la communication des résultats, mais toute
I'information souhaitée est contenue dans la distribution toute entiére (pas seulement sa moyenne, son
mode, ou autre).
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Rappels de notation

Greek Alphabet and Symbols

AoBPITY|AS|Ee|Z
Hn®0| 1 | Kk|ANMp
NVIE 1O o| It Pp 3o,
LT Y v Dol Xx [y Qw

Illustration tirée de https:/masterofmemory.com/mmem-0333-learn-the-greek-alphabet/
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https://masterofmemory.com/mmem-0333-learn-the-greek-alphabet/

Rappels : prior predictive checking

O 0o N O Ul H WN B

rnorm(n = le4, mean = 100, sd = 10) |> hist(breaks = "FD")

e
N P S

mu_prior <- rnorm(n = le4, mean = 100, sd = 10)

el e
U~ W

rnorm(n = le4, mean = mu_prior, sd = 10) [|> hist(breaks = "FD")

e
o N O

sigma_prior <- rexp(n = le4, rate = 0.1)

NN
R S O
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Rappels : prior predictive checking

Fixed mu and sigma

T T 1
150 200 250
rnorm(n = nsamples, mean =100, sd = 10)

Uncertainty on mu

T T T 1
-50 0 50 100 150 200 250
rnorm(n = nsamples, mean = mu_prior, sd = 10)

Uncertainty on mu and sigma

T T T 1
-50 0 50 100 150 200 250
rnorm(n = nsamples, mean = mu_prior, sd = sigma_prior)
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Le probléme avec la distribution postérieure

( 0 IT; Normal(z; | u,o)Normal(u | 178,20)Uniform(o | 0, 50)
Lo | h) =
P JJ 11, Normal(n; | u,o)Normal(u | 178,20)Uniform(o | 0,50)dudo

Petit probleme : La constante de normalisation (en vert) s'obtient en calculant la somme (pour des
variables discrétes) ou I'intégrale (pour des variables continues) de la densité conjointe p(data, 0) sur
toutes les valeurs possibles de 6. Cela se complique lorsque le modéle comprend plusieurs paramétres

et/ou que la forme de la distribution postérieure est complexe...
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Le probléme avec la distribution postérieure

WebGL is not supported by your browser -
visit https://get.webgl.org for more info
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Rappels Cours n°02
Trois méthodes pour résoudre (contourner) ce probleme :

e La distribution a priori est un prior conjugué de la fonction de vraisemblance (e.g., modéle Beta-
Binomial). Dans ce cas, il existe une solution analytique (i.e., qu'on peut calculer de maniere exacte)
pour la distribution postérieure.

o Autrement, pour des modeles simples, on peut utiliser la méthode par grille. On calcule la valeur
exacte de la probabilité postérieure en un nombre fini de points dans l'espace des parametres.

e Pour les modeles plus complexes, explorer tout I'espace des parameétres n'est pas tractable. On va
plutdt échantillonner intelligemment un grand nombre de points dans I'espace des paramétres.
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Objectifs du cours

— Présenter le principe de base de I'échantillonnage : Markov Chain Monte Carlo
— Présenter deux algorithmes (Metropolis-Hastings et HMC)

— Montrer les forces mais aussi les faiblesses de ces méthodes

— Donner des outils de contrdle sur ces méthodes

— Appliguer ces méthodes a un cas simple
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Markov Chain Monte Carlo

e Markov chain Monte Carlo
—  Echantillonnage aléatoire
— Lerésultat est un ensemble de valeurs du parametre

e Markov chain Monte Carlo
— Lesvaleurs sont générées sous forme de séquences (liaison de dépendance)

— Indice temporel pour identifier la place dans la chaine
—, Lerésultat estde laforme:0',6%,6%,....,6"

 Markov chain Monte Carlo
— Lavaleur de parametre générée ne dépend que de la valeur du parametre précédent

Pr(6*! | 65,67, ...,0") = Pr(&! | &)

Ladislas Nalborczyk - IMSB2026
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Méthodes Monte Carlo

Le terme de méthode de Monte-Carlo désigne une famille d'algorithmes visant a calculer (ou
approcher) une valeur numeérique en utilisant des procédés aléatoires, c'est-a-dire des techniques
probabilistes. Cette méthode a été formalisée en 1947 par Nicholas Metropolis, et publiée pour la
premiere fois en 1949 dans un article co-écrit avec Stanislaw Ulam.

12
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Méthodes Monte Carlo : Estimation de 7

Soit un point M de coordonnées (x,y),ou0 < x < 1 et0 < y < 1. On tire aléatoirement les valeurs de x
et yentre 0 et 1 suivant une loi uniforme. Le point M appartient au disque de centre (0,0) derayonr = 1
si et seulement siv x2 + y2 < 1. On sait que le quart de disque est de surface ¢ = rll4 = /4 et que le
carré qui le contient est de surface s = r> = 1.Silaloide probabilité du tirage de point est uniforme, la
probabilité que le point M appartienne au disque est donc de g/s = /4. En faisant le rapport du nombre

de points dans le disque au nombre de tirages JIIL“"; on obtient alors une approximation de /4.
tota

1.0 = 3000, = = 3.1133
08
0.6
0.4 -.

021

0.0 0.2 0.4 0.6 0.8 1.0
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Méthodes Monte Carlo : Estimation de 7

trials <- 1e5
radius <- 1

X <- runif(n = trials, min = @, max = radius)

y <- runif(n = trials, min = @, max = radius)
distance <- sqrt(xA2 + yA2)

inside <- distance < radius

pi_estimate <- 4 * sum(inside) / trials

1e+05 Trials, Estimate = 3.1432

1.00

0.75 A

> 0.50 1

0.25 -~

0.00 1
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Méthodes Monte Carlo

Autre exemple : déterminer la superficie d'un lac ou encore déterminer le maximum d'une fonction
(optimisation) via recuit simulé (simulated annealing, voir Wikipedia).

Temperature: 25.0

Ladislas Nalborczyk - IMSB2026
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https://en.wikipedia.org/wiki/Simulated_annealing
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Méthodes Monte Carlo

Monte Carlo désigne une famille d'algorithmes qui ont pour but d'approcher des valeurs numériques a
partir de procédés aléatoires. Pourrait-on s'en servir pour obtenir une approximation de la distribution
postérieure ?

On connait les priors p(6,) et p(6,)
On connait la fonction de vraisemblance p(data | 6, 6,)

p(data | 61,6,)p(61)p(62)
p(data)

Mais on ne sait pas calculer la distribution postérieure... p(6;, 6, | data) =

Ou plutdt, on ne sait pas calculer p(data)...! Mais on sait calculer la distribution postérieure a une
constante prés. Or, comme p(data) est une constante, elle ne change pas la forme de la distribution
postérieure...! On va donc explorer I'espace des parametres et produire des échantillons
proportionnellement a leur (densité de) probablité relative.
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Influence de la constante de normalisation

WebGL is not supported by your browser -
visit https://get.webgl.org for more info
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Méthodes Monte Carlo : Exemple

Considérons un exemple simple : Soit un paramétre 6 avec 7 valeurs possibles et la fonction de
répartition suivante, ou p(0) = 6.

4-
)
o
0- - I I
1 2 3 4 5 6 7

0

N
1
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Méthodes Monte Carlo : Exemple

Approximation de cette distribution par tirage aléatoire : Cela revient a tirer aléatoirement un grand
nombre de points “au hasard” parmi ces 28 cases (comme pour le calcul de 7)

A

A

A

A

5

5

5

5

5

Ladislas Nalborczyk - IMSB2026
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Méthodes Monte Carlo : Exemple

nhiter <- 100
theta <- 1:7

ptheta <- theta

samples <- sample(x = theta, prob = ptheta, size = niter, replace = TRUE)

Distribution postérieure basée sur 100 tirages

0 20 40 60 80
Numéro d'itération

Mais, cela nécessite généralement beaucoup d'échantillons...

Aucun contrdle sur la vitesse de convergence...

Et si on abandonnait I'échantillonnage indépendant ?

Ladislas Nalborczyk - IMSB2026

La distribution des échantillons obtenus converge vers la “vraie” distribution.
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Algorithme Metropolis

Cet algorithme a été présenté pour la premiere fois en 1953 par Nicholas Metropolis, Arianna W.
Rosenbluth, Marshall Rosenbluth, Augusta H. Teller, et Edward Teller. Le probleme des algorithmes
Monte-Carlo n'est pas la convergence, mais la vitesse a laquelle la méthode converge. Pour augmenter la
vitesse de convergence, il faudrait faciliter I'accés aux valeurs de parameétres les plus représentées.

Principe :

e On fait une proposition de déplacement sur la base de la valeur courante du parametre.

» On réalise un tirage aléatoire pour accepter ou rejeter la nouvelle position.

Deux idées centrales:

e |La proposition doit favoriser les valeurs de parameétre les plus probables : On parcourt plus souvent ces
valeurs de parametres.

e La proposition doit se limiter aux valeurs adjacentes au parametre courant : On augmente la vitesse de
convergence en restant la ou se trouve l'information (i.e., en parcourant I'espace des parametres de
maniere locale plutét que globale).

Ladislas Nalborczyk - IMSB2026



Algorithme Metropolis

Sélectionner un point de départ (on peut sélectionner n'importe quelle valeur).

10.0 1 Position de départ
7.5
SANNE
¥
2'5- I I I
1 2 3 4 5 6 7
0
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Algorithme Metropolis

Faire une proposition de déplacement centrée sur la valeur courante de 6.

10.01 50% 50%
7.5 -
D 50-
o
2'5- I I I
1 2 3 4 5 6 7
5]
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Algorithme Metropolis

Calculer la probabilité d'accepter le déplacement selon la réegle suivante :

Pr(6,:0n0se
Pr =min< (prde) 1>

move PI'( 6current) ,

10.0 1 Pr(proposed) / Pr(current)=5/4>1
7.5
D 504
Q.
2'5- I I I I I
1' 2 3 4 5 6 7
S
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Algorithme Metropolis

La position calculée devient la nouvelle position de départ et on répéete l'algorithme.

10.0 1 Nouvelle position
7.54
SANNE
a
2'5- I I I
1 2 3 4 5 6 7
0
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Algorithme Metropolis

metropolis <- function (niter = le2, startval = 4) {

X <- rep(@, niter)
x[1] <- startval

for (i in 2:niter) {

current <- x[1 - 1]
proposal <- current + sample(c(-1, 1), size = 1)

1
2
3
4
5
6
14
8
9

10

11 if (proposal < 1) proposal <- 1

12 if (proposal > 7) proposal <- 7

13

14 prob_move <- min(1l, proposal / current)
15

16

4 x[1] <- sample(c(proposal, current), size = 1, prob = c(prob_move, 1 - prob_move) )
18

19

20

21 return (x)
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Méthodes Monte Carlo vs. Algorithme Metropolis

Méthode Monte Carlo

u
2 3 4 5 6 7

50 100 150 200
Nombre d'itérations
Algorithme Metropolis
50 100 150 200

Nombre d'itérations
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Algorithme Metropolis

Application au lancer de piéce (cas continu)

La fonction de vraisemblance est donnée par: p(y | 6,n) « 6V(1 — 6)")
Le prior est donné par: p(8 | a,b) « 89D (1 —g)b-D
Le parameétre que I'on cherche a estimer prend ses valeurs dans l'intervalle [0, 1]

Probleme n°1: Comment définir la proposition de déplacement ?

On peut modéliser le déplacement par une distribution normale : A6 ~ Normal(0, o)
— La moyenne u vaut 0 : le déplacement se fait autour de la valeur courante du paramétre
— La variance reste a déterminer, elle contréle I'éloignement de la nouvelle valeur

Ladislas Nalborczyk - IMSB2026
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Algorithme Metropolis

Probleme n°2: Quelle probabilité utiliser pour accepter ou refuser le déplacement ? Nous utilisons le
produit de la vraisemblance et du prior: 67(1 — 8)") gla=b (| — g)b-D

PI‘( ecurrent +A 9) 1 )
Pr(6 ’

current )

La probabilité d'accepter le déplacement est donnée par : Pryove = min (

0.15

0.10

P(9+A6)
=3 P(9)
s 5 5 oins G 5 o
. Pr(6.yrrent +AO) A ) - L : .. :
REMARQUE : Le rapport PO, ) est le méme que I'on utilise |la distribution postérieure ou le produit
current

prior par vraisemblance (car la constante de normalisation s'annule) !
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Algorithme Metropolis

—

—

Sélectionner un point de départ
Il faut choisir 6 € [0, 1]
Seule contrainte : Pr(Biyitia) # 0

Choisir une direction de déplacement
Faire un tirage suivant Normal(0, o)

Accepter ou rejeter la proposition de déplacement, suivant la probabilité :

— min (Pr(ecurrent + A@) 1)
- PI‘ (ecurrent) ,

La position calculée devient la nouvelle position

Pr

move
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Algorithme Metropolis

Beginning of chain End of chain
1004 10000 A
N .ﬁ‘
2%~ 0.49
Npro
75+ 9975 A
£ £
© ©
< <
[&] (&]
£ 50+ £ 9950
[oX [oX
pei 2
w (¢p]
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01 F—H 9900 -
O.Z)O 0.I25 0.:50 0.I75 1 .bO O.bO 0.I25 O.:c'>0 O.I75 1 .IOO
0 0

median = 0.688

Proposal SD =0.2

ESS =2367
] ||
0.00 0.25 0.50 0.75
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Algorithme Metropolis

Comment choisir 0 pour la proposition de déplacement ? Deux indices permettent d'évaluer la qualité
de I'échantillonnage:

— Le rapport entre le nombre de déplacements proposés et le nombre de déplacements acceptés

— L'effective sample size (i.e., le nombre de déplacements qui ne sont pas corrélés avec les précédents)
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Algorithme Metropolis

Beginning of chain End of chain
1004 10000 A
N
€ =0.933
Npro
75+ 9975 A
£ £
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< <
[&] [&]
£ 50+ C 9950
[oX [oX
pei 2
w (¢p]
254 9925
0- 9900
0.2)0 O.I25 0.:50 O.I75 1 .IOO O.E)O 0.I25 0.I50 O.I75 1 .IOO
0 0

median = 0.689

Proposal SD = 0.02
ESS=79.8

. o _-___...|I|| i
0.00 0.25 0.50 0.75

]
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Algorithme Metropolis

Le choix de sigma dans la proposition de déplacement
— Toutes les propositions de déplacement (ou presque) sont acceptées
— Peu de valeurs effectives

Il faut beaucoup d'itérations pour avoir un résultat satisfaisant...
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Algorithme Metropolis

Beginning of chain End of chain
1004 10000 A
N
€ =0.06
Npro
75+ 9975 A
£ £
© ©
< <
[&] [&]
£ 50+ C 9950
[oX [oX
2 2
w (¢p]
254 9925
0- 9900
0.2)0 0.I25 0.:50 O.I75 1 .bO O.Z)O 0.I25 0.:50 O.I75 1 .IOO
0 S

median = 0.685

Proposal SD =2
ESS =4435

. . Minllloas] all_n.
0.00 0.25 0.50 0.75 1.00
0
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Algorithme Metropolis

Le choix de sigma dans la proposition de déplacement
— Les propositions de déplacement sont rarement acceptées
— Peu de valeurs effectives...

Il faut beaucoup d'itérations pour obtenir un résultat satisfaisant...

Ladislas Nalborczyk - IMSB2026
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Algorithme Metropolis!

metropolis_beta_binomial <- function (niter = le2, startval = 0.5) {

x <- rep(@, niter)
x[1] <- startval

for (1 in 2:niter) {

current <- x[1 - 1]
current_plaus <- dbeta(current, 2, 3) * dbinom(1l, 2, current)

1
2
3
4
5
6
14
8
9

10

11 proposal <- rnorm(n = 1, mean = current, sd = 0.1)

12

13 if (proposal < @) proposal <- 0

14 if (proposal > 1) proposal <- 1

() proposal_plaus <- dbeta(proposal, 2, 3) * dbinom(1l, 2, proposal)
16

17 alpha <- min(1, proposal_plaus / current_plaus)

18

19 x[1] <- sample(c(current, proposal), size = 1, prob = c(1 - alpha, alpha) )
20

21

1. L'algorithme Metropolis-Hastings est une extension de 'algorithme Metropolis qui permet de faire des
propositions de déplacement non symmétrique. Voir https://en.wikipedia.org/wiki/Metropolis—

Hastings_algorithm.
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Algorithme Metropolis

1 z1 <- metropolis_beta_binomial(niter = le4, startval
2 z2 <- metropolis_beta_binomial(niter = le4, startval

data.frame(zl = z1, z2 = z2) %%
mutate(sample = l:nrow(.) ) %>%
pivot_longer(cols = z1:z2) %>%
ggplot(aes(x = sample, y = value, colour = name) ) +
geom_line(show.legend = FALSE) +
labs(x = , Y = expression(theta) ) + ylim(c(@, 1) )

1.00 4

0.754

@ 0.50

0.254

0.00 4

0 2500 5000 7500 10000
Nombre d'itérations
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Algorithme Metropolis

data.frame(zl = z1, z2 = z2) %>%
pivot_longer(cols = z1:z2) %>%
rownames_to_column() %>%
mutate(rowname = as.numeric(rowname) ) %>%

geom_histogram(aes(y = ..density..), color = "white", alpha = 0.8) +
stat_function(fun = dbeta, args = 1ist(3, 4), color = "magenta4", size = 1) +
facet_wrap(~name) +

1

2

3

4

5 ggplot(aes(x = value) ) +

6

7

8

9 labs(x = expression(theta), y = "Densité")

z1 z2
2.0+
1.54
NO)
=
[Va]
S 1.0-
()
0.5
] ||| {
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

S

Ladislas Nalborczyk - IMSB2026


http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf

Algorithme Metropolis-Hastings
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Algorithme Hamiltonian Monte Carlo

Les algorithmes Metropolis et Metropolis-Hastings (ou Gibbs) ont de mauvaises performances lorsque
les parameétres du modeéle sont fortement corrélés. L'algorithme Hamiltonian Monte Carlo résout ces
probleme en utilisant la géométrie de I'espace postérieur. On va adapter la proposition de déplacement
a la géomeétrie de la distribution postérieure aux alentours de |la position courante.

On utilise 'opérateur hamiltonien (hamiltonians) qui représente I'énergie totale d'un systeme. Cette
énergie se décompose en I'énergie potentielle (qui dépend de la position dans lI'espace des parameétres
0) et son énergie cinétique, qui dépend de son moment (momentum, m) :

HO,m)= U® + KE(m)

—_————
énergie potentielle  énergie cinétique

L'énergie potentielle est donnée par le négatif du log de la densité postérieure (non-normalisée) ;
U(6) = —log[p(data | 6) x p(6)]

Quand la densité postérieure augmente, I'énergie potentielle diminue (i.e., devient plus négative).
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Algorithme Hamiltonian Monte Carlo
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43
Algorithme Hamiltonian Monte Carlo

o Sélectionner un point de départ 6, : On peut sélectionner n'importe quelle valeur de 6 dans l'espace
postérieur.

e On génere aléatoirement la force avec lagquelle on lance la bille (moment), par exemple a partir d'une
loi normale multivariée : m ~ MVNormal(u, 2).

e On utilise un algorithme d’'approximation de la trajectoire (e.g., leapfrog) pour estimer la trajectoire et
la position finale de la bille dans I'espace postérieur pour une certaine durée.

e Aprées un certain temps, on enregistre la position finale de la bille et son moment.

« On accepte ou rejette la proposition de déplacement suivant la probabilité suivante (ou ¢ (phi) est le
moment associé a la bille) :

Pr = min (

move

p(eproposed | data) p(¢proposed) 1)
p(ecurrent | data) P(Gb current) ’

e On enregistre la nouvelle position et on recommence...
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Influence de la durée de déplacement..
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Influence de la variabilité du
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Algorithme Hamiltonian Monte Carlo
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Evaluation des MCMC

Ces méthodes peuvent ne pas converger vers la “vraie” distribution postérieure, en raison du temps de
calcul limité, du paramétrage de certains hyper-parametres (e.g., variance de la distribution normale de
la proposition, ou variance du moment initial pour HMC).

Ces méthodes produisent des chaines de valeurs de parametres (échantillons). L'utilisation de tel ou tel
algorithme MCMC pour échantillonner |a distribution postérieure repose sur trois objectifs :

e Lesvaleurs de la chaine doivent étre représentatives de la distribution postérieure. Ces valeurs ne
doivent pas dépendre du point de départ. Ces valeurs ne doivent pas étre cantonnées a une région
particuliere de 'espace des parametres.

e La chaine doit étre suffisamment longue pour assurer la précision et |la stabilité du résultat. La
tendance centrale et le HDI calculés a partir de la chaine ne doivent pas changer si on relance la
procédure.

e La chaine doit étre générée de maniére efficace (i.e.,, avec le moins d'itérations possible).
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Evaluation des MCMC - Représentativité

o Vérification visuelle des trajectoires : Les chaines doivent occuper le méme espace, la convergence ne
dépend pas du point de départ, aucune chaine ne doit avoir de trajectoire particuliere (e.g., cyclique).

o Vérification visuelle des densités : Les densités doivent se superposer.
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Evaluation des MCMC - Représentativité

Cette affichage ne montre que les 500 premieres itérations. Les trajectoires ne se superposent pas au
début (zone orange). La densité est également affectée. En pratique on supprime ces premieres
itérations (période de “burn-in" ou de “warm-up’).
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Evaluation des MCMC - Représentativité

Vérification numérigue des chaines : Le shrink factor (aussi connu comme R ou Rhat) est le rapport
entre la variance inter-chaines et intra-chaine. Cette valeur devrait idéalement tendre vers 1 (on la
considere comme acceptable jusqu'a 1.1).
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Evaluation des MCMC - Stabilité et précicion

Plus la chaine est longue et plus le résultat sera précis et stable. Si la chaine “s'attarde” sur chaque
position, et que le nombre d'itérations reste le méme, alors on perd en précision. Il lui faudra plus
d'itérations pour arriver au méme niveau de précision. L'autocorrélation est |la corrélation de la chaine

avec elle-méme mais décalé de k itérations (lag).
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Evaluation des MCMC - Stabilité et précicion

La fonction d’'autocorrélation est représentée pour chague chaine (en haut a droite). Un autre résultat

rend compte de la précision de I'’échantillon : I'effective sample size, ESS = N

723 . ACF(R) - Il représente la

taille d'un échantillon non-autocorrélé extrait de la somme de toutes les chaines. Pour une précision
raisonnable du HDI, il est recommandé d'avoir un ESS supérieur a 1000.
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Evaluation des MCMC - Stabilité et précicion

L'erreur standard d’'un ensemble d'échantillons est donné par : SE = SD/+/N . Plus N augmente, plus
I'erreur standard diminue. On peut généraliser cette idée aux chaines de Markov: MCSE = SD/+/ESS .
Pour une précision raisonnable de la tendance centrale, il faut que cette valeur soit faible.
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Evaluation des MCMC - Implémentation via brms

library(tidyverse)
library(imsb)
library(brms)

d <- open_dataChowell)
d2 <- d %% filter(age >= 18)

priors <- c(
prior(normal(150, 20), class = Intercept),
prior(normal(@, 10), class = b),
prior(exponential(@.01), class = sigma)

)

O 0o N O Ul H WN B

e el e e
A WOWDNPEPOS

modl <- brm(
formula = height ~ 1 + weight,
prior = priors,
family = gaussian(),
data = d2,
chains = 4,
1ter = 2000,
warmup = 1000,

N NP EP P PR
P S OW 0 N O Ul
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Evaluation des MCMC - Implémentation via brms
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Evaluation des MCMC - Implémentation via brms

1 1library(bayesplot)

2 post <- posterior_samples(modl, add_chain = TRUE)

3 post %>% mcmc_acf(pars =

vars(b_Intercept:sigma), lags = 10)

b_Intercept b_weight sigma
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Evaluation des MCMC - Implémentation via brms

1 summary(modl)

Family: gaussian
Links: mu = identity
Formula: height ~ 1 + weight
Data: d2 (Number of observations: 352)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 113.87 1.93 110.10 117.63 1.00 3986 2758
weight 0.91 0.04 0.82 0.99 1.00 3939 2847

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 5.11 0.20 4.73 5.51 1.00 3717 2996

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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Evaluation des MCMC - Implémentation via brms

Bulk-ESS fait référence a I'ESS calculé sur la distribution des échantillons normalisée par leur rang, et
plus particulierement autour de la position centrale de cette distribution (e.g., moyenne ou médiane). On
recommande que le Bulk-ESS soit au moins 100 fois plus élevé que le nombre de chaines (i.e., pour 4
chaines, le Bulk-ESS devrait étre d'au moins 400).

Tail-ESS donne le minimum de I'ESS calculé pour les quantiles a 5% et 95% (i.e., pour les queues de Ia
distribution des échantillons normalisés par leur rang). Cette valeur doit étre élevée si nous accordons de
I'importance a l'estimation des valeurs extrémees (par exemple pour calculer un intervalle de crédibilité).

Quand tout va mal, voir ces recommendations de I'équipe de Stan concernant les choix de prior, ou ce
guide concernant les messages d'erreur fréquents. Voir aussi I'article récent ou cet article de blog

introduisant ces nouveaux indices.
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Evaluation des MCMC - Implémentation via brms

1 post %>%
mcmc_rank_overlay(pars = vars(b_Intercept:sigma) ) +

labs(x = "Rang", y = "Fréquence") +
coord_cartesian(ylim = c(25, NA) )

b_Intercept b_weight sigma
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Résumé du cours

Nous avons introduit et discuté 'utilisation d’échantillonneurs pour obtenir des échantillons issus de |a
distribution postérieure (non-normalisée). Ces échantillons peuvent ensuite étre utilisés pour calculer
différentes statistiques de la distribution postérieure (e.g., moyenne, médiane, HDI).

L'algorithme Metropolis-Hastings peut étre utilisé pour n'importe quel probleme pour lequel une
vraisemblance peut étre calculée. Cependant, bien que cet algorithme soit simple a coder, sa
convergence peut étre tres lente... De plus, cet algorithme ne fonctionne pas bien lorsqu'il existe de
fortes corrélations entre les différents parametres...

L'algorithme HMC évite ces problemes en prenant en considération la géomeétrie de I'espace postérieur
lors de son exploration (i.e., lorsque l'algorithme décide ou il doit aller ensuite). Cet algorithme converge
beaucoup plus rapidement, et donc moins d’échantillons seront nécessaires pour approcher la
distribution postérieure.

Le résultat d'une inférence bayésienne est donc, en pratique, un ensemble d'échantillons obtenus en
utilisant des MCMCs. La fiabilité des ces estimations doit étre évaluée en vérifiant (visuellement et
numériqguement) que les MCMCs ont bien convergé vers une solution optimale.
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Travaux pratiques

On s'intéresse a la performance économique des capitales rgdppc_2000 en fonction de deux parametres:
la rudesse du paysage (plus ou moins vallonné) rugged et son appartenance au continent africain

cont_africa.

library(tidyverse)
library(imsb)

d <- open_data(rugged) %>% mutate(log_gdp = log(rgdppc_2000) )
dfl <- d[complete.cases(d$rgdppc_2000), ]
str(dfl)

'data.frame’: 170 obs. of 6 variables:
$ isocode : chr "AGO" "ALB" "ARE" "ARG" ...
country : chr "Angola" "Albania" "United Arab Emirates" "Argentina" ...
rugged : num 0.858 3.427 0.769 0.775 2.688 ...
cont_africa: int 1000000001 ...
rgdppc_2000: num 1795 3703 20004 12174 2422 ...
log_gdp D num 7.49 8.22 9.93 9.41 7.79 ...
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Travaux pratiques

Ecrire le modeéle qui prédit log_gdp en fonction de la rudesse du terrain, du continent, et de I'interaction
de ces deux variables avec brms: :brm(), en spécifiant vos propres priors.

log(gdp;) ~ Normal(u;, ;)
Mi = o+ 1 x rugged; + 3, x continent; + (33 X (rugged; x continent;)
a~ ...

51’52’53 REERE

Examinez ensuite les estimations de ce modele (interprétation des parametres, diagnostiques des
MCMCs). Puis, essayez de complexifier le modele, voire de le rendre incohérent, afin d'identifier des
problemes liés aux MCMCs.
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Proposition de réponse

1 priors2 <- c(

2 prior(normal(@, 100), class = Intercept),
3 prior(normal(@, 10), class = b),

4 prior(exponential(@.01), class = sigma)

5 )
6
I

8
9

mod2 <- brm(

formula = log_gdp ~ 1 + rugged * cont_africa,
prior = priorsZ2,

10 family = gaussian(),

11 data = dfl,

12 chains = 4,

13 cores =

14 warmup = 1000,

() 1ter = 2000

16 )
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Proposition de réponse

1 summary(mod2)

Family: gaussian
Links: mu = identity
Formula: log_gdp ~ 1 + rugged * cont_africa
Data: dfl (Number of observations: 170)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 9.22 0.14 8.95 9.50 1.00 2475 2837
rugged -0.20 0.08 -0.36 -0.05 1.00 2385 2804
cont_africa -1.95 0.23 -2.38 -1.50 1.00 2321 2790
rugged:cont_africa 0.39 0.13 0.13 0.65 1.00 2178 2858

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 0.95 0.006 0.85 1.07 1.00 3768 2714

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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Proposition de réponse

1 plot(x = mod2, combo = c("dens_overlay", "trace"), pars = "Ab_")
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Proposition de réponse

1 pairs(x = mod2, np = nuts_params(mod2) )

b_Intercept
9.50

9.25
9.00
8.75
88 9.0 9.2 94 96 9.8 -0.50.4-0.30.20.10.0 —2I.5 —2I.O —1I.5 -1.0

9.50
9.25
9.00
8.75

0.0 0.2 04 0.6 0.8
0.0 b_rugged 0.0 o 00-
-0.14 -0.14 -0.1 1
0.2+ 0274 0.2+
-0.34 -0.3 1o -0.3 1
-0.4 ® -0.44 -0.4 1
-0'5 T T T ._r -0.5 a T T T T -0.5 a T T T T
9.00 9.25 9.50 9.75 -04 -0.2 0.0 -25 -20 -15 -1.0 0.0 0.2 04 0.6 0.8

b_cont_africa -1.01
1.5
-2.0
-2.51 Y

L4 &

9.00 9.25 9.50 9.75 -0.5-0.4-0.3-0.2-0.1 0.0

0.0 0.2 04 0.6 08

® b_rugged:cont_africa

0.75 o 0.75 1
0.50 0.50 1
0.25 0.25 1

0.00 TC ] 0004 TT@eee ——
9.00 9.25 950 9.75  -0.5-0.4-0.3-0.2-0.10.0 25 20 -15 0.00 025 050 0.75
[ ] [J
11 @ (]
1.04®
094
0.8 :
9.00 925 950 9.75  -0.5-0.4-0.3-0.2-0.1 0.0 25 20 -15 0.00 025 050 0.75 08 09 10 11 12

Ladislas Nalborczyk - IMSB2026


http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf

Proposition de réponse

mod3 <- brm(

1

2

3 formula = log_gdp ~ 1 + log_gdp * rgdppc_2000,
4 family = gaussian(),

5 data = dfl,
6

7

8

9

chains = 2,

cores =

warmup = 1000,

1ter = 2000
10 )
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Proposition de réponse

1 plot(x = mod3, combo = c("dens_overlay", "trace"), pars = "Ab_")
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