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Planning
Cours n°01 : Introduction à l’inférence bayésienne
Cours n°02 : Modèle Beta-Binomial
Cours n°03 : Introduction à brms, modèle de régression linéaire
Cours n°04 : Modèle de régression linéaire (suite)
Cours n°05 : Markov Chain Monte Carlo
Cours n°06 : Modèle linéaire généralisé
Cours n°07 : Comparaison de modèles
Cours n°08 : Modèles multi-niveaux (généralisés)
Cours n°09 : Examen final
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Rappels de notation
La notation  peut faire référence à deux choses selon le contexte : la fonction de vraisemblance et
le modèle d’observation. De plus, on trouve de nombreuses notations ambigues en statistique. Essayons
de clarifier ci-dessous.

𝑝(𝑦 | 𝜃)

 désigne une probabilité (e.g., dbinom(x = 2, size = 10, prob = 0.5)).Pr(𝑌 = 𝑦 | Θ = 𝜃)
 désigne une densité de probabilité (e.g., dbeta(x = 0.4, shape1 = 2, shape2 = 3)).𝑝(𝑌 = 𝑦 | Θ = 𝜃)

 désigne une fonction de vraisemblance (likelihood) discrète ou continue,  est connu/fixé,
 est une variable aléatoire, la somme (ou l’intégrale) de cette distribution n’est pas égale à 1 (e.g.,

dbinom(x = 2, size = 10, prob = seq(0, 1, 0.1) )).

𝑝(𝑌 = 𝑦 | Θ) 𝑦
Θ

 désigne une fonction de masse (ou densité) de probabilité (dont la somme ou l’intégrale
est égale à 1), qu’on appelle aussi “modèle d’observation” (observation model) ou “distribution
d’échantillonnage” (sampling distribution),  est une variable aléatoire,  est connu/fixé (e.g., dbinom(x 
= 0:10, size = 10, prob = 0.5))

𝑝(𝑌 | Θ = 𝜃)

𝑌 𝜃

Le but de l’analyse bayésienne (i.e., ce qu’on obtient à la fin d’une telle analyse) est la distribution
postérieure . On peut la résumer pour faciliter la communication des résultats, mais toute
l’information souhaitée est contenue dans la distribution toute entière (pas seulement sa moyenne, son
mode, ou autre).

𝑝(𝜃 | 𝑦)
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Rappels de notation

Illustration tirée de .https://masterofmemory.com/mmem-0333-learn-the-greek-alphabet/
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Rappels : prior predictive checking
########################################################################1
# On définit un modèle avec :                                          #2
# Une fonction de vraisemblance Gaussienne : y ~ Normal(mu, sigma)     #3
# Un prior Gaussien pour la moyenne : mu ~ Normal(100, 10)             #4
# Et un prior Exponentiel pour l'écart-type : sigma ~ Exponential(0.1) #5
########################################################################6

7
# on simule 10.000 observations issues d'une distribution Gaussienne sans incertitude (épistémique)8
rnorm(n = 1e4, mean = 100, sd = 10) |> hist(breaks = "FD")9

10
# on tire 10.000 échantillons issus du prior Gaussien pour mu (i.e., p(mu))11
mu_prior <- rnorm(n = 1e4, mean = 100, sd = 10)12

13
# 10.000 observations issues d'une distribution Gaussienne avec incertitude sur mu14
rnorm(n = 1e4, mean = mu_prior, sd = 10) |> hist(breaks = "FD")15

16
# on tire 10.000 échantillons issus du prior Exponentiel pour sigma (i.e., p(sigma))17
sigma_prior <- rexp(n = 1e4, rate = 0.1)18

19
# 10.000 observations issues d'une distribution Gaussienne avec incertitude sur mu ET sigma20
# ce que le modèle suppose à propos de y sur la base de nos priors pour mu et sigma...21

( 1 4 i d i i ) | hi (b k "FD")22
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Rappels : prior predictive checking
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Le problème avec la distribution postérieure

Petit problème : La constante de normalisation (en vert) s’obtient en calculant la somme (pour des
variables discrètes) ou l’intégrale (pour des variables continues) de la densité conjointe  sur
toutes les valeurs possibles de . Cela se complique lorsque le modèle comprend plusieurs paramètres
et/ou que la forme de la distribution postérieure est complexe…

𝑝(𝜇, 𝜎 | ℎ) =
Normal( | 𝜇, 𝜎)Normal(𝜇 | 178, 20)Uniform(𝜎 | 0, 50)∏ 𝑖 ℎ𝑖

∫ ∫ Normal( | 𝜇, 𝜎)Normal(𝜇 | 178, 20)Uniform(𝜎 | 0, 50)d𝜇d𝜎∏ 𝑖 ℎ𝑖

𝑝(data, 𝜃)
𝜃
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Le problème avec la distribution postérieure

WebGL is not supported by your browser -
visit https://get.webgl.org for more info
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Rappels Cours n°02
Trois méthodes pour résoudre (contourner) ce problème :

La distribution a priori est un prior conjugué de la fonction de vraisemblance (e.g., modèle Beta-
Binomial). Dans ce cas, il existe une solution analytique (i.e., qu’on peut calculer de manière exacte)
pour la distribution postérieure.

Autrement, pour des modèles simples, on peut utiliser la méthode par grille. On calcule la valeur
exacte de la probabilité postérieure en un nombre fini de points dans l’espace des paramètres.

Pour les modèles plus complexes, explorer tout l’espace des paramètres n’est pas tractable. On va
plutôt échantillonner intelligemment un grand nombre de points dans l’espace des paramètres.
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Objectifs du cours
 Présenter le principe de base de l’échantillonnage : Markov Chain Monte Carlo

 Présenter deux algorithmes (Metropolis-Hastings et HMC)

 Montrer les forces mais aussi les faiblesses de ces méthodes

 Donner des outils de contrôle sur ces méthodes

 Appliquer ces méthodes à un cas simple

⟶  

⟶  

⟶  

⟶  

⟶  
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Markov Chain Monte Carlo
Markov chain Monte Carlo

 Échantillonnage aléatoire
 Le résultat est un ensemble de valeurs du paramètre

⟶  
⟶  
Markov chain Monte Carlo

 Les valeurs sont générées sous forme de séquences (liaison de dépendance)
 Indice temporel pour identifier la place dans la chaîne
 Le résultat est de la forme : 

⟶  
⟶  
⟶   , , , … ,𝜃1 𝜃2 𝜃3 𝜃𝑡

Markov chain Monte Carlo
 La valeur de paramètre générée ne dépend que de la valeur du paramètre précédent⟶  

Pr( | , , … , ) = Pr( | )𝜃𝑡+1 𝜃𝑡 𝜃𝑡−1 𝜃1 𝜃𝑡+1 𝜃𝑡
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Méthodes Monte Carlo
Le terme de méthode de Monte-Carlo désigne une famille d’algorithmes visant à calculer (ou
approcher) une valeur numérique en utilisant des procédés aléatoires, c’est-à-dire des techniques
probabilistes. Cette méthode a été formalisée en 1947 par Nicholas Metropolis, et publiée pour la
première fois en 1949 dans un article co-écrit avec Stanislaw Ulam.
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Méthodes Monte Carlo : Estimation de 
Soit un point  de coordonnées , où  et . On tire aléatoirement les valeurs de 
et  entre  et  suivant une loi uniforme. Le point  appartient au disque de centre  de rayon 
si et seulement si . On sait que le quart de disque est de surface  et que le
carré qui le contient est de surface . Si la loi de probabilité du tirage de point est uniforme, la
probabilité que le point  appartienne au disque est donc de . En faisant le rapport du nombre
de points dans le disque au nombre de tirages , on obtient alors une approximation de .

𝜋

𝑀 (𝑥, 𝑦) 0 < 𝑥 < 1 0 < 𝑦 < 1 𝑥
𝑦 0 1 𝑀 (0, 0) 𝑟 = 1

⩽ 1+𝑥2 𝑦2√ 𝜎 = 𝜋 /4 = 𝜋/4𝑟2

𝑠 = = 1𝑟2

𝑀 𝜎/𝑠 = 𝜋/4
𝑁 inner
𝑁 total

𝜋/4
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Méthodes Monte Carlo : Estimation de 𝜋
trials <- 1e5 # nombre d'échantillons1
radius <- 1 # rayon du cercle2
x <- runif(n = trials, min = 0, max = radius) # tirages pour x3
y <- runif(n = trials, min = 0, max = radius) # tirages pour y4
distance <- sqrt(x^2 + y^2) # distance à l'origine5
inside <- distance < radius # à l'intérieur (ou pas) du quart de cercle ?6
pi_estimate <- 4 * sum(inside) / trials # estimation de pi7
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Méthodes Monte Carlo
Autre exemple : déterminer la superficie d’un lac ou encore déterminer le maximum d’une fonction
(optimisation) via recuit simulé (simulated annealing, voir ).Wikipedia
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Méthodes Monte Carlo
Monte Carlo désigne une famille d’algorithmes qui ont pour but d’approcher des valeurs numériques à
partir de procédés aléatoires. Pourrait-on s’en servir pour obtenir une approximation de la distribution
postérieure ?

On connaît les priors  et 
On connaît la fonction de vraisemblance 

𝑝( )𝜃1 𝑝( )𝜃2
𝑝(data | , )𝜃1 𝜃2

Mais on ne sait pas calculer la distribution postérieure… 𝑝( , | data) =𝜃1 𝜃2
𝑝(data | , )𝑝( )𝑝( )𝜃1 𝜃2 𝜃1 𝜃2

𝑝(data)
Ou plutôt, on ne sait pas calculer … ! Mais on sait calculer la distribution postérieure à une
constante près. Or, comme  est une constante, elle ne change pas la forme de la distribution
postérieure… ! On va donc explorer l’espace des paramètres et produire des échantillons
proportionnellement à leur (densité de) probablité relative.

𝑝(data)
𝑝(data)
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Influence de la constante de normalisation

WebGL is not supported by your browser -
visit https://get.webgl.org for more info
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Méthodes Monte Carlo : Exemple
Considérons un exemple simple : Soit un paramètre  avec 7 valeurs possibles et la fonction de
répartition suivante, où .

𝜃
𝑝(𝜃) = 𝜃
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Méthodes Monte Carlo : Exemple
Approximation de cette distribution par tirage aléatoire : Cela revient à tirer aléatoirement un grand
nombre de points “au hasard” parmi ces 28 cases (comme pour le calcul de ) !𝜋
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Méthodes Monte Carlo : Exemple
niter <- 100 # nombre d'itérations1
theta <- 1:7 # valeurs possibles de theta2
ptheta <- theta # densité de probabilité de theta3
samples <- sample(x = theta, prob = ptheta, size = niter, replace = TRUE) # échantillons4

La distribution des échantillons obtenus converge vers la “vraie” distribution.

Mais, cela nécessite généralement beaucoup d’échantillons…

Aucun contrôle sur la vitesse de convergence…

Et si on abandonnait l’échantillonnage indépendant ?
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Algorithme Metropolis
Cet algorithme a été présenté pour la première fois en 1953 par Nicholas Metropolis, Arianna W.
Rosenbluth, Marshall Rosenbluth, Augusta H. Teller, et Edward Teller. Le problème des algorithmes
Monte-Carlo n’est pas la convergence, mais la vitesse à laquelle la méthode converge. Pour augmenter la
vitesse de convergence, il faudrait faciliter l’accès aux valeurs de paramètres les plus représentées.

Principe :

On fait une proposition de déplacement sur la base de la valeur courante du paramètre.

On réalise un tirage aléatoire pour accepter ou rejeter la nouvelle position.

Deux idées centrales :

La proposition doit favoriser les valeurs de paramètre les plus probables : On parcourt plus souvent ces
valeurs de paramètres.

La proposition doit se limiter aux valeurs adjacentes au paramètre courant : On augmente la vitesse de
convergence en restant là où se trouve l’information (i.e., en parcourant l’espace des paramètres de
manière locale plutôt que globale).

21
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Algorithme Metropolis
Sélectionner un point de départ (on peut sélectionner n’importe quelle valeur).
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Algorithme Metropolis
Faire une proposition de déplacement centrée sur la valeur courante de .𝜃
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Algorithme Metropolis
Calculer la probabilité d’accepter le déplacement selon la règle suivante :

= min( , 1)Pr
move

Pr( )𝜃proposed

Pr( )𝜃current
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Algorithme Metropolis
La position calculée devient la nouvelle position de départ et on répète l’algorithme.

25

Ladislas Nalborczyk - IMSB2026



Algorithme Metropolis
metropolis <- function (niter = 1e2, startval = 4) {1
    2
    x <- rep(0, niter) # initialise la chaîne (le vecteur) de longueur niter3
    x[1] <- startval # définit la valeur de départ du paramètre4
    5
    for (i in 2:niter) {6
        7
        current <- x[i - 1] # valeur courante du paramètre8
        proposal <- current + sample(c(-1, 1), size = 1)9
        # on s'assure que la valeur proposée est bien dans l'intervalle [1, 7]10
        if (proposal < 1) proposal <- 111
        if (proposal > 7) proposal <- 712
        # calcul de la probabilité de déplacement13
        prob_move <- min(1, proposal / current)14
        # on se déplace (ou pas) suivant cette probabilité15
        # x[i] <- ifelse(prob_move > runif(n = 1, min = 0, max = 1), proposal, current)16
        x[i] <- sample(c(proposal, current), size = 1, prob = c(prob_move, 1 - prob_move) )17
        18
    }19
    20
    return (x)21

22
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Méthodes Monte Carlo vs. Algorithme Metropolis
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Algorithme Metropolis
Application au lancer de pièce (cas continu)

 La fonction de vraisemblance est donnée par : 
 Le prior est donné par : 
 Le paramètre que l’on cherche à estimer prend ses valeurs dans l’intervalle 

  ∙   𝑝(𝑦 | 𝜃, 𝑛) ∝ (1 − 𝜃𝜃𝑦 )(𝑛−𝑦)
  ∙   𝑝(𝜃 | 𝑎, 𝑏) ∝ (1 − 𝜃𝜃(𝑎−1) )(𝑏−1)
  ∙   [0, 1]

Problème n°1 : Comment définir la proposition de déplacement ?

On peut modéliser le déplacement par une distribution normale : 
 La moyenne  vaut  : le déplacement se fait autour de la valeur courante du paramètre
 La variance reste à déterminer, elle contrôle l’éloignement de la nouvelle valeur

Δ𝜃 ∼ Normal(0, 𝜎)
⟶   𝜇 0
⟶  
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Algorithme Metropolis
Problème n°2 : Quelle probabilité utiliser pour accepter ou refuser le déplacement ? Nous utilisons le
produit de la vraisemblance et du prior : (1 − 𝜃 (1 − 𝜃𝜃𝑦 )(𝑛−𝑦)𝜃(𝑎−1) )(𝑏−1)

La probabilité d’accepter le déplacement est donnée par : 

REMARQUE : Le rapport  est le même que l’on utilise la distribution postérieure ou le produit
prior par vraisemblance (car la constante de normalisation s’annule) !

= min ( , 1)Prmove
Pr( +Δ𝜃)𝜃current

Pr( )𝜃current

Pr( +Δ𝜃)𝜃current
Pr( )𝜃current
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Algorithme Metropolis
 Sélectionner un point de départ

 Il faut choisir 
 Seule contrainte : 

⟶  
  ∙   𝜃 ∈ [0, 1]
  ∙   Pr( ) ≠ 0𝜃initial

 Choisir une direction de déplacement
 Faire un tirage suivant 

⟶  
  ∙   Normal(0, 𝜎)

 Accepter ou rejeter la proposition de déplacement, suivant la probabilité :

 La position calculée devient la nouvelle position

⟶  

= min ( , 1)Pr
move

Pr( + Δ𝜃)𝜃current
Pr( )𝜃current

⟶  
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Algorithme Metropolis
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Algorithme Metropolis
Comment choisir  pour la proposition de déplacement ? Deux indices permettent d’évaluer la qualité
de l’échantillonnage :

 Le rapport entre le nombre de déplacements proposés et le nombre de déplacements acceptés

 L’effective sample size (i.e., le nombre de déplacements qui ne sont pas corrélés avec les précédents)

𝜎

→

→
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Algorithme Metropolis
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Algorithme Metropolis
Le choix de sigma dans la proposition de déplacement

 Toutes les propositions de déplacement (ou presque) sont acceptées

 Peu de valeurs effectives

Il faut beaucoup d’itérations pour avoir un résultat satisfaisant…

→  

→  
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Algorithme Metropolis
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Algorithme Metropolis
Le choix de sigma dans la proposition de déplacement

 Les propositions de déplacement sont rarement acceptées

 Peu de valeurs effectives…

Il faut beaucoup d’itérations pour obtenir un résultat satisfaisant…

→

→
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Algorithme Metropolis1

metropolis_beta_binomial <- function (niter = 1e2, startval = 0.5) {1
    2
    x <- rep(0, niter) # initialise la chaîne (le vecteur) de longueur niter3
    x[1] <- startval # définit la valeur de départ du paramètre4
    5
    for (i in 2:niter) {6
        7
        current <- x[i - 1] # valeur courante du paramètre8
        current_plaus <- dbeta(current, 2, 3) * dbinom(1, 2, current)9
        # proposal <- runif(n = 1, min = current - w, max = current + w) # valeur proposée10
        proposal <- rnorm(n = 1, mean = current, sd = 0.1) # valeur proposée11
        # on s'assure que la valeur proposée est bien dans l'intervalle [0, 1]12
        if (proposal < 0) proposal <- 013
        if (proposal > 1) proposal <- 114
        proposal_plaus <- dbeta(proposal, 2, 3) * dbinom(1, 2, proposal)15
        # calcul de la probabilité de déplacement16
        alpha <- min(1, proposal_plaus / current_plaus)17
        # on se déplace (ou pas) suivant cette probabilité18
        x[i] <- sample(c(current, proposal), size = 1, prob = c(1 - alpha, alpha) )19
        20
    }21

221. L’algorithme Metropolis-Hastings est une extension de l’algorithme Metropolis qui permet de faire des
propositions de déplacement non symmétrique. Voir 

.
https://en.wikipedia.org/wiki/Metropolis–

Hastings_algorithm

37

Ladislas Nalborczyk - IMSB2026

http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
http://127.0.0.1:3473/cours05.html?print-pdf
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm


Algorithme Metropolis
z1 <- metropolis_beta_binomial(niter = 1e4, startval = 0.5)1
z2 <- metropolis_beta_binomial(niter = 1e4, startval = 0.5)2

3
data.frame(z1 = z1, z2 = z2) %>%4
  mutate(sample = 1:nrow(.) ) %>%5
  pivot_longer(cols = z1:z2) %>%6
  ggplot(aes(x = sample, y = value, colour = name) ) +7
  geom_line(show.legend = FALSE) +8
  labs(x = "Nombre d'itérations", y = expression(theta) ) + ylim(c(0, 1) )9
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Algorithme Metropolis
data.frame(z1 = z1, z2 = z2) %>%1
  pivot_longer(cols = z1:z2) %>%2
  rownames_to_column() %>%3
  mutate(rowname = as.numeric(rowname) ) %>%4
  ggplot(aes(x = value) ) +5
  geom_histogram(aes(y = ..density..), color = "white", alpha = 0.8) +6
  stat_function(fun = dbeta, args = list(3, 4), color = "magenta4", size = 1) +7
  facet_wrap(~name) +8
  labs(x = expression(theta), y = "Densité")9
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Algorithme Metropolis-Hastings
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Algorithme Hamiltonian Monte Carlo
Les algorithmes Metropolis et Metropolis-Hastings (ou Gibbs) ont de mauvaises performances lorsque
les paramètres du modèle sont fortement corrêlés. L’algorithme Hamiltonian Monte Carlo résout ces
problème en utilisant la géométrie de l’espace postérieur. On va adapter la proposition de déplacement
à la géométrie de la distribution postérieure aux alentours de la position courante.

On utilise l’opérateur hamiltonien (hamiltonians) qui représente l’énergie totale d’un système. Cette
énergie se décompose en l’énergie potentielle (qui dépend de la position dans l’espace des paramètres

) et son énergie cinétique, qui dépend de son moment (momentum, ) :𝜃 𝑚

𝐻(𝜃,𝑚) = +𝑈(𝜃)
⏟énergie potentielle

𝐾𝐸(𝑚)
⏟énergie cinétique

L’énergie potentielle est donnée par le négatif du log de la densité postérieure (non-normalisée) ;

Quand la densité postérieure augmente, l’énergie potentielle diminue (i.e., devient plus négative).

𝑈(𝜃) = − log[𝑝(data | 𝜃) × 𝑝(𝜃)]
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Algorithme Hamiltonian Monte Carlo
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Algorithme Hamiltonian Monte Carlo
Sélectionner un point de départ  : On peut sélectionner n’importe quelle valeur de  dans l’espace
postérieur.

𝜃0 𝜃

On génère aléatoirement la force avec laquelle on lance la bille (moment), par exemple à partir d’une
loi normale multivariée : .𝑚 ∼ MVNormal(𝜇, Σ)
On utilise un algorithme d’approximation de la trajectoire (e.g., leapfrog) pour estimer la trajectoire et
la position finale de la bille dans l’espace postérieur pour une certaine durée.

Après un certain temps, on enregistre la position finale de la bille et son moment.

On accepte ou rejette la proposition de déplacement suivant la probabilité suivante (où  (phi) est le
moment associé à la bille) :

𝜙

= min( , 1)Pr
move

𝑝( | data) 𝑝( )𝜃proposed 𝜙proposed

𝑝( | data) 𝑝( )𝜃current 𝜙current

On enregistre la nouvelle position et on recommence…

43

Ladislas Nalborczyk - IMSB2026



Influence de la durée de déplacement…
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Influence de la variabilité du moment initial…
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Algorithme Hamiltonian Monte Carlo
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Évaluation des MCMC
Ces méthodes peuvent ne pas converger vers la “vraie” distribution postérieure, en raison du temps de
calcul limité, du paramétrage de certains hyper-paramètres (e.g., variance de la distribution normale de
la proposition, ou variance du moment initial pour HMC).

Ces méthodes produisent des chaînes de valeurs de paramètres (échantillons). L’utilisation de tel ou tel
algorithme MCMC pour échantillonner la distribution postérieure repose sur trois objectifs :

Les valeurs de la chaîne doivent être représentatives de la distribution postérieure. Ces valeurs ne
doivent pas dépendre du point de départ. Ces valeurs ne doivent pas être cantonnées à une région
particulière de l’espace des paramètres.

La chaîne doit être suffisamment longue pour assurer la précision et la stabilité du résultat. La
tendance centrale et le HDI calculés à partir de la chaîne ne doivent pas changer si on relance la
procédure.

La chaîne doit être générée de manière efficace (i.e., avec le moins d’itérations possible).
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Évaluation des MCMC - Représentativité
Vérification visuelle des trajectoires : Les chaînes doivent occuper le même espace, la convergence ne
dépend pas du point de départ, aucune chaîne ne doit avoir de trajectoire particulière (e.g., cyclique).

Vérification visuelle des densités : Les densités doivent se superposer.
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Évaluation des MCMC - Représentativité
Cette affichage ne montre que les 500 premières itérations. Les trajectoires ne se superposent pas au
début (zone orange). La densité est également affectée. En pratique on supprime ces premières
itérations (période de “burn-in” ou de “warm-up”).
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Évaluation des MCMC - Représentativité
Vérification numérique des chaînes : Le shrink factor (aussi connu comme  ou Rhat) est le rapport
entre la variance inter-chaînes et intra-chaîne. Cette valeur devrait idéalement tendre vers 1 (on la
considère comme acceptable jusqu’à 1.1).

𝑅ˆ
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Évaluation des MCMC - Stabilité et précicion
Plus la chaîne est longue et plus le résultat sera précis et stable. Si la chaîne “s’attarde” sur chaque
position, et que le nombre d’itérations reste le même, alors on perd en précision. Il lui faudra plus
d’itérations pour arriver au même niveau de précision. L’autocorrélation est la corrélation de la chaîne
avec elle-même mais décalé de  itérations (lag).𝑘
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Évaluation des MCMC - Stabilité et précicion
La fonction d’autocorrélation est représentée pour chaque chaîne (en haut à droite). Un autre résultat
rend compte de la précision de l’échantillon : l’effective sample size, . Il représente la

taille d’un échantillon non-autocorrélé extrait de la somme de toutes les chaînes. Pour une précision
raisonnable du HDI, il est recommandé d’avoir un ESS supérieur à 1000.

𝐸𝑆𝑆 = 𝑁
1+2 𝐴𝐶𝐹(𝑘)∑ 𝑘
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Évaluation des MCMC - Stabilité et précicion
L’erreur standard d’un ensemble d’échantillons est donné par : . Plus  augmente, plus
l’erreur standard diminue. On peut généraliser cette idée aux chaînes de Markov : .
Pour une précision raisonnable de la tendance centrale, il faut que cette valeur soit faible.

𝑆𝐸 = 𝑆𝐷/ 𝑁√ 𝑁

𝑀𝐶𝑆𝐸 = 𝑆𝐷/ 𝐸𝑆𝑆√

53

Ladislas Nalborczyk - IMSB2026



Évaluation des MCMC - Implémentation via brms
library(tidyverse)1
library(imsb)2
library(brms)3

4
d <- open_data(howell)5
d2 <- d %>% filter(age >= 18)6

7
priors <- c(8
  prior(normal(150, 20), class = Intercept),9
  prior(normal(0, 10), class = b),10
  prior(exponential(0.01), class = sigma)11
  )12

13
mod1 <- brm(14
  formula = height ~ 1 + weight,15
  prior = priors,16
  family = gaussian(),17
  data = d2, 18
  chains = 4, # nombre de MCMCs19
  iter = 2000, # nombre total d'itérations (par chaîne)20
  warmup = 1000, # nombre d'itérations pour le warm-up21

hi 1 # hi i (1 hi i )22
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Évaluation des MCMC - Implémentation via brms
# combo can be hist, dens, dens_overlay, trace, trace_highlight...1
# cf. https://mc-stan.org/bayesplot/reference/MCMC-overview.html2
plot(x = mod1, combo = c("dens_overlay", "trace") )3
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Évaluation des MCMC - Implémentation via brms
library(bayesplot)1
post <- posterior_samples(mod1, add_chain = TRUE)2
post %>% mcmc_acf(pars = vars(b_Intercept:sigma), lags = 10)3
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Évaluation des MCMC - Implémentation via brms
summary(mod1)1

 Family: gaussian 
  Links: mu = identity 
Formula: height ~ 1 + weight 
   Data: d2 (Number of observations: 352) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Regression Coefficients:
          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept   113.87      1.93   110.10   117.63 1.00     3986     2758
weight        0.91      0.04     0.82     0.99 1.00     3939     2847

Further Distributional Parameters:
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma     5.11      0.20     4.73     5.51 1.00     3717     2996

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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Évaluation des MCMC - Implémentation via brms
Bulk-ESS fait référence à l’ESS calculé sur la distribution des échantillons normalisée par leur rang, et
plus particulièrement autour de la position centrale de cette distribution (e.g., moyenne ou médiane). On
recommande que le Bulk-ESS soit au moins 100 fois plus élevé que le nombre de chaînes (i.e., pour 4
chaînes, le Bulk-ESS devrait être d’au moins 400).

Tail-ESS donne le minimum de l’ESS calculé pour les quantiles à 5% et 95% (i.e., pour les queues de la
distribution des échantillons normalisés par leur rang). Cette valeur doit être élevée si nous accordons de
l’importance à l’estimation des valeurs extrêmees (par exemple pour calculer un intervalle de crédibilité).

Quand tout va mal, voir ces  de l’équipe de Stan concernant les choix de prior, ou ce
 concernant les messages d’erreur fréquents. Voir aussi  ou cet 

introduisant ces nouveaux indices.

recommendations
guide l’article récent article de blog
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https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
https://arxiv.org/abs/1903.08008
https://statmodeling.stat.columbia.edu/2019/03/19/maybe-its-time-to-let-the-old-ways-die-or-we-broke-r-hat-so-now-we-have-to-fix-it/


Évaluation des MCMC - Implémentation via brms
post %>% # rank plots1
  mcmc_rank_overlay(pars = vars(b_Intercept:sigma) ) +2
  labs(x = "Rang", y = "Fréquence") +3
  coord_cartesian(ylim = c(25, NA) )4
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Résumé du cours
Nous avons introduit et discuté l’utilisation d’échantillonneurs pour obtenir des échantillons issus de la
distribution postérieure (non-normalisée). Ces échantillons peuvent ensuite être utilisés pour calculer
différentes statistiques de la distribution postérieure (e.g., moyenne, médiane, HDI).

L’algorithme Metropolis-Hastings peut être utilisé pour n’importe quel problème pour lequel une
vraisemblance peut être calculée. Cependant, bien que cet algorithme soit simple à coder, sa
convergence peut être très lente… De plus, cet algorithme ne fonctionne pas bien lorsqu’il existe de
fortes corrélations entre les différents paramètres…

L’algorithme HMC évite ces problèmes en prenant en considération la géométrie de l’espace postérieur
lors de son exploration (i.e., lorsque l’algorithme décide où il doit aller ensuite). Cet algorithme converge
beaucoup plus rapidement, et donc moins d’échantillons seront nécessaires pour approcher la
distribution postérieure.

Le résultat d’une inférence bayésienne est donc, en pratique, un ensemble d’échantillons obtenus en
utilisant des MCMCs. La fiabilité des ces estimations doit être évaluée en vérifiant (visuellement et
numériquement) que les MCMCs ont bien convergé vers une solution optimale.
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Travaux pratiques
On s’intéresse à la performance économique des capitales rgdppc_2000 en fonction de deux paramètres :
la rudesse du paysage (plus ou moins vallonné) rugged et son appartenance au continent africain
cont_africa.

library(tidyverse)1
library(imsb)2

3
d <- open_data(rugged) %>% mutate(log_gdp = log(rgdppc_2000) )4
df1 <- d[complete.cases(d$rgdppc_2000), ]5
str(df1)6

'data.frame':   170 obs. of  6 variables:
 $ isocode    : chr  "AGO" "ALB" "ARE" "ARG" ...
 $ country    : chr  "Angola" "Albania" "United Arab Emirates" "Argentina" ...
 $ rugged     : num  0.858 3.427 0.769 0.775 2.688 ...
 $ cont_africa: int  1 0 0 0 0 0 0 0 0 1 ...
 $ rgdppc_2000: num  1795 3703 20604 12174 2422 ...
 $ log_gdp    : num  7.49 8.22 9.93 9.41 7.79 ...
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Travaux pratiques
Écrire le modèle qui prédit log_gdp en fonction de la rudesse du terrain, du continent, et de l’interaction
de ces deux variables avec brms::brm(), en spécifiant vos propres priors.

Examinez ensuite les estimations de ce modèle (interprétation des paramètres, diagnostiques des
MCMCs). Puis, essayez de complexifier le modèle, voire de le rendre incohérent, afin d’identifier des
problèmes liés aux MCMCs.

log( )gdp𝑖
𝜇𝑖

𝛼

, ,𝛽1 𝛽2 𝛽3

∼ Normal( , )𝜇𝑖 𝜎𝑖
= 𝛼 + × + × + × ( × )𝛽1 rugged𝑖 𝛽2 continent𝑖 𝛽3 rugged𝑖 continent𝑖
∼ …
∼ …
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Proposition de réponse
priors2 <- c(1
  prior(normal(0, 100), class = Intercept),2
  prior(normal(0, 10), class = b),3
  prior(exponential(0.01), class = sigma)4
  )5

6
mod2 <- brm(7
  formula = log_gdp ~ 1 + rugged * cont_africa,8
  prior = priors2,9
  family = gaussian(),10
  data = df1,11
  chains = 4, # nombre de chaînes12
  cores = 4, # nombre de coeurs parallèles13
  warmup = 1000, # nombre d'itérations pour le warm-up14
  iter = 2000 # nombre total d'itérations (par chaîne)15
  )16
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Proposition de réponse
summary(mod2)1

 Family: gaussian 
  Links: mu = identity 
Formula: log_gdp ~ 1 + rugged * cont_africa 
   Data: df1 (Number of observations: 170) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Regression Coefficients:
                   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept              9.22      0.14     8.95     9.50 1.00     2475     2837
rugged                -0.20      0.08    -0.36    -0.05 1.00     2385     2804
cont_africa           -1.95      0.23    -2.38    -1.50 1.00     2321     2790
rugged:cont_africa     0.39      0.13     0.13     0.65 1.00     2178     2858

Further Distributional Parameters:
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma     0.95      0.06     0.85     1.07 1.00     3768     2714

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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Proposition de réponse
plot(x = mod2, combo = c("dens_overlay", "trace"), pars = "^b_")1
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Proposition de réponse
pairs(x = mod2, np = nuts_params(mod2) ) # voir ?nuts_params1
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Proposition de réponse
mod3 <- brm(1
  # modèle incohérent, interaction entre deux variables redondantes2
  formula = log_gdp ~ 1 + log_gdp * rgdppc_2000,3
  family = gaussian(),4
  data = df1,5
  chains = 2, # nombre de chaînes6
  cores = 2, # nombre de coeurs parallèles7
  warmup = 1000, # nombre d'itérations pour le warm-up8
  iter = 2000 # nombre total d'itérations (par chaîne)9
  )10
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Proposition de réponse
plot(x = mod3, combo = c("dens_overlay", "trace"), pars = "^b_")1
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