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Abstract6

Time-resolved electrophysiological measurements such as those obtained
through magneto- and electroencephalography (M/EEG) offer a unique win-
dow onto the neural activity underlying cognitive processes. Researchers are
often interested in determining whether and when these signals differ across
experimental conditions or participant groups. The conventional approach
involves mass univariate statistical testing across time and space followed
by corrections for multiple comparisons or some form of cluster-based infer-
ence. While effective for controlling error rates at the cluster-level, cluster-
based inference comes with a significant limitation: by shifting the focus
of inference from individual time points to clusters, it prevents drawing
conclusions about the precise onset or offset of observed effects. Here, we
present a model-based alternative for analysing M/EEG timeseries, such as
event-related potentials or time-resolved decoding accuracy. Our approach
leverages Bayesian generalised additive multilevel models, providing poste-
rior odds that an effect exceeds zero (or chance) at each time point, while
naturally accounting for temporal dependencies and between-subject vari-
ability. Using both simulated and empirical M/EEG datasets, we show that
this approach substantially outperforms conventional methods in estimating
the onset and offset of neural effects, yielding more precise and reliable es-
timates. We provide an open-source R package implementing the method
and describe how it can be integrated into M/EEG analysis pipelines using
MNE-Python.

Keywords: EEG, MEG, cluster-based inference, multiple comparisons, gen-
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statistics, brms

7



BAYESIAN MODELLING OF M/EEG DATA 2

1 Introduction1

1.1 Problem statement2

Understanding the temporal dynamics of cognitive processes requires methods that can cap-3

ture fast-changing neural activity with high temporal resolution. Magnetoencephalography and4

electroencephalography (M/EEG) are two such methods, widely used in cognitive neuroscience5

for their ability to track brain activity at the millisecond scale. These techniques provide rich6

timeseries data that reflect how neural responses unfold in response to stimuli or tasks. A cen-7

tral goal in many M/EEG studies is to determine whether, when, and where neural responses8

differ across experimental conditions or groups.9

The conventional approach involves mass univariate statistical testing through time and/or10

space followed by some form of correction for multiple comparisons with the goal of maintaining11

the family-wise error rate (FWER) or the false discovery rate (FDR) at the nominal level (e.g.,12

5%). Cluster-based inference is the most common way of achieving this sort of error control13

in the M/EEG literature, being the recommended approach in several software programs (e.g.,14

EEGlab, Delorme & Makeig, 2004; MNE-Python, Gramfort, 2013). While effective for controlling15

error rates, cluster-based inference comes with a significant limitation: by shifting the focus of16

inference from individual datapoints (e.g., timesteps, sensors, voxels) to clusters, it prevents the17

ability to draw precise conclusions about the spatiotemporal localisation of such effects (Maris18

& Oostenveld, 2007; Sassenhagen & Draschkow, 2019). As pointed out by Maris & Oostenveld19

(2007): “there is a conflict between this interest in localized effects and our choice for a global20

null hypothesis: by controlling the FA [false alarm] rate under this global null hypothesis, one21

cannot quantify the uncertainty in the spatiotemporal localization of the effect”. Even worse,22

Rosenblatt et al. (2018) note that cluster-based inference suffers from low spatial resolution:23

“Since discovering a cluster means that ‘there exists at least one voxel with an evoked response24

in the cluster’, and not that ‘all the voxels in the cluster have an evoked response’, it follows that25

the larger the detected cluster, the less information we have on the location of the activation.”26

As a consequence, cluster-based inference is expected to perform poorly for identifying the onset27

of M/EEG effects; a property that was later demonstrated in simulation studies (e.g., Rousselet,28

2025; Sassenhagen & Draschkow, 2019).29

To overcome the limitations of cluster-based inference, we introduce a novel model-based ap-30

proach for precisely localising M/EEG effects in time, space, and other dimensions. The pro-31

posed approach, based on Bayesian generalised additive multilevel models, allows quantifying32

the posterior odds of effects being above chance at the level of timesteps, sensors, voxels, etc,33

while naturally taking into account spatiotemporal dependencies present in M/EEG data. We34
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compare the performance of the proposed approach to well-established alternative methods using35

both simulated and actual M/EEG data and show that it significantly outperforms alternative36

methods in estimating the onset and offset of M/EEG effects.37

1.2 Statistical errors and cluster-based inference38

The issues with multiple comparisons represent a common and well-recognised danger in neu-39

roimaging and M/EEG research, where the collected data allows for a multitude of potential40

hypothesis tests and is characterised by complex structures of spatiotemporal dependencies.41

The probability of obtaining at least one false positive in an ensemble (family) of m indepen-42

dent tests (i.e., the FWER) is computed as 1 − (1− α)m (for m = 10 independent tests and43

α = 0.05, it is approximately equal to 0.4). Different methods exist to control the FWER, that44

is, to bring it back to α. Most methods apply a simple correction to series of p-values issued from45

univariate statistical tests (e.g., t-tests). For instance, the Bonferroni correction (Dunn, 1961)46

consists in setting the significance threshold to α/m, or equivalently, multiplying the p-values by47

m and using the standard α significance threshold. This method is generally overconservative48

(i.e., under-powered) as it assumes statistical independence of the tests, an assumption that is49

clearly violated in the context of M/EEG timeseries characterised by massive spatiotemporal50

dependencies. Some alternative methods aims at controlling the FDR, defined as the proportion51

of false positive among positive tests (e.g., Benjamini & Hochberg, 1995; Benjamini & Yekutieli,52

2001). However, a major limitation of both types of corrections is that they do not take into53

account the spatial and temporal information contained in M/EEG data.54

A popular technique to account for spatiotemporal dependencies while controlling the FWER55

is cluster-based inference (Bullmore et al., 1999; Maris & Oostenveld, 2007). A typical cluster-56

based inference consists of two successive steps (for more details on cluster-based inference, see57

for instance Frossard & Renaud, 2022; Maris, 2011; Maris & Oostenveld, 2007; Sassenhagen &58

Draschkow, 2019). First, clusters are defined as sets of contiguous timesteps, sensors, voxels,59

etc, whose activity, summarised by some test statistic (e.g., a t-value), exceeds a predefined60

threshold (e.g., the 95th percentile of the parametric null distribution). Clusters are then61

characterised by their height (i.e., maximal value), extent (number of constituent elements), or62

some combination of both, for instance by summing the statistics within a cluster, an approach63

referred to as “cluster mass” (Maris & Oostenveld, 2007; Pernet et al., 2015). Then, the null64

hypothesis is tested by computing a p-value for each identified cluster by comparing its mass65

with the null distribution of cluster masses (obtained via permutation). As alluded previously,66

a significant cluster is a cluster which contains at least one significant time-point. As such, it67

would be incorrect to conclude, for instance, that the timestep of a significant cluster is the first68

moment at which some conditions differ (Frossard & Renaud, 2022; Sassenhagen & Draschkow,69

2019). Because the inference is performed at the second step (i.e., once clusters have been70

formed), no conclusion can be made about individual datapoints (e.g., timesteps, sensors, etc).71

As different cluster-forming thresholds lead to clusters with different spatial or temporal ex-72

tent, this initial threshold modulates the sensitivity of the subsequent permutation test. The73

threshold-free cluster enhancement (TFCE) method was introduced by S. Smith & Nichols74
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(2009) to overcome this choice of an arbitrary threshold. In brief, the TFCE method works75

as follows. Instead of picking an arbitrary cluster-forming threshold (e.g., t = 2), the methods76

consist in trying all (or many) possible thresholds in a given range and checking whether a given77

datapoint (e.g., timestep, sensor, voxel) belongs to a significant cluster under any of the set of78

thresholds. Then, instead of using cluster mass, one uses a weighted average between the cluster79

extend (e, how broad is the cluster, that is, how many connected samples it contains) and the80

cluster height (h, how high is the cluster, that is, how large is the test statistic). The TFCE81

score at each timestep t is given by:82

TFCE(t) =
∫ h=ht

h=h0

e(h)EhHdh

where h0 is typically 0 and parameters E and H are set a priori (typically to 0.5 and 2, re-83

spectively) and control the influence of the extend and height on the TFCE. In practice, this84

integral is approximated by a sum over small h increments. Then, a p-value for each timestep85

t is computed by comparing its TFCE with the null distribution of TFCE values (obtained86

via permutation). For each permuted signal, we keep the maximal value over the whole sig-87

nal for the null distribution of the TFCE. The TFCE combined with permutation (assuming88

a large enough number of permutations) has been shown to provide accurate FWER control89

(e.g., Pernet et al., 2015). However, further simulation work showed that cluster-based meth-90

ods (including TFCE) perform poorly in localising the onset of M/EEG effects (e.g., Rousselet,91

2025; Sassenhagen & Draschkow, 2019).92

To sum up, the main limitation of cluster-based inference is that it allows for inference at the93

cluster level only, not allowing inference at the level of timesteps, sensors, etc. As a conse-94

quence, it does not allow inferring the precise spatial and temporal localisation of effects. In95

the following, we briefly review previous modelling work of M/EEG data. Then, we provide a96

short introduction to generalised additive models (GAMs) to illustrate how these models can97

be used to precisely estimate the onset and offset of M/EEG effects.98

1.3 Previous work on modelling M/EEG data99

Scalp-recorded M/EEG signals capture neural activity originating from various brain regions100

and are often contaminated by artefacts unrelated to the cognitive processes under investigation.101

Consequently, analysing M/EEG data necessitates methods that can disentangle task-relevant102

neural signals from extraneous “noise.” A widely adopted technique for this purpose is the esti-103

mation of event-related potentials (ERPs), which are stereotyped electrophysiological responses104

time-locked to specific sensory, cognitive, or motor events. Typically, ERPs are derived by105

averaging EEG or MEG epochs across multiple trials aligned to the event of interest (e.g., stim-106

ulus onset), thereby enhancing the signal-to-noise ratio by attenuating non-time-locked activity.107

However, this averaging approach has notable limitations: it assumes consistent latency and108

amplitude across trials and is primarily suited for simple categorical designs. Such assumptions109

may not hold in more complex experimental paradigms, potentially leading to suboptimal ERP110

estimations (e.g., N. J. Smith & Kutas, 2014a).111
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To overcome the limitations of simple averaging, several model-based approaches for estimating112

ERPs have been proposed. These methods are motivated by the observation that traditional113

ERP averaging is mathematically equivalent to fitting an intercept-only linear regression model114

in a simple categorical design without overlapping events (N. J. Smith & Kutas, 2014a). In115

contrast to simple averaging, regression-based approaches to ERP estimation offer substantially116

greater flexibility. Notably, they allow for the modelling of both linear and nonlinear effects of117

continuous predictors, such as word frequency or age (e.g., N. J. Smith & Kutas, 2014a, 2014b;118

Tremblay & Newman, 2014), and enable the disentangling of overlapping cognitive processes119

(e.g., Ehinger & Dimigen, 2019; Skukies et al., 2024; Skukies & Ehinger, 2021). One widely120

used implementation of this approach is provided by the LIMO EEG toolbox (Pernet et al.,121

2011), which follows a multi-stage analysis pipeline. First, a separate regression model is fit122

for each datapoint (e.g., each time point and electrode) at the individual level to estimate123

ERP responses. This is followed by group-level statistical analyses of the resulting regression124

coefficients, often accompanied by corrections for multiple comparisons or cluster-based inference125

(for recent applied examples, see Dunagan et al., 2025; Wüllhorst et al., 2025).126

Although this framework allows for the inclusion of a wide range of predictors–both continuous127

and categorical, linear and nonlinear–it still has important limitations. First, fitting separate128

models for each datapoint ignores the spatiotemporal dependencies inherent in M/EEG data,129

potentially reducing statistical power and interpretability. Second, the subsequent group-level130

analyses typically do not account for hierarchical dependencies which could otherwise be ad-131

dressed through multilevel modelling. Finally, because the output of this procedure is sum-132

marised by cluster-based inference, its conclusions remain subject to the limitations discussed133

in the previous section.134

Beyond modelling nonlinear effects of continuous predictors on ERP amplitudes, GAMs have135

been employed to capture the temporal dynamics of ERPs themselves, effectively modelling the136

shape of the waveform over time (Abugaber et al., 2023; Baayen et al., 2018; Meulman et al.,137

2015, 2023). This approach allows for the estimation of smooth, data-driven functions that138

characterise how neural responses evolve over time, offering a flexible alternative to traditional139

linear models. In the following section, we provide a brief introduction to GAMs, highlighting140

their applicability to M/EEG timeseries analysis and the advantages they offer over conventional141

methods.142

1.4 Generalised additive models143

In generalised additive models, the functional relationship between the predictors and the re-144

sponse variable is decomposed into a sum of low-dimensional non-parametric functions. A145

typical GAM has the following form:146
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yi ∼ EF (µi, ϕ)

g (µi) = Aiγ︸︷︷︸
parametric part

+

J∑
j=1

fj (xij)︸ ︷︷ ︸
non-parametric part

where yi ∼ EF (µi, ϕ) denotes that the observations yi are distributed as some member of the147

exponential family of distributions (e.g., Gaussian, Gamma, Beta, Poisson) with mean µi and148

scale parameter ϕ; g(·) is the link function, Ai is the ith row of a known parametric model149

matrix, γ is a vector of parameters for the parametric terms (to be estimated), fj is a smooth150

function of covariate xj (to be estimated as well). The smooth functions fj are represented in151

the model as a weighted sum of K simpler, basis functions:152

fj (xij) =

K∑
k=1

βjkbjk (xij)

where βjk is the weight (coefficient) associated with the kth basis function bjk() evaluated at153

the covariate value xij for the jth smooth function fj . To clarify the terminology at this point:154

splines are functions composed of simpler functions. These simpler functions are called basis155

functions (e.g., cubic polynomial, thin-plate) and the set of basis functions is called a basis. Each156

basis function is weighted by its coefficient and the resultant spline is the sum of these weighted157

basis functions (Figure 1A). Splines coefficients are penalised (usually through the square of the158

smooth functions’ second derivative) in a way that can be interpreted, in Bayesian terms, as159

a prior on the “wiggliness” of the function (Miller, 2025; Wood, 2017a). In other words, more160

complex (wiggly) basis functions are automatically penalised.161

A detailed treatment of the technical underpinnings of GAMs is beyond the scope of this article162

(see reference books such as Hastie & Tibshirani, 2017; Wood, 2017a). However, it is worth163

emphasising that GAMs have been successfully applied to a wide range of timeseries data164

across the cognitive sciences, including pupillometry (e.g., Rij et al., 2019), articulography (e.g.,165

Wieling, 2018), speech formant dynamics (e.g., Sóskuthy, 2021), neuroimaging data (e.g., Dinga166

et al., 2021), and event-related potentials (e.g., Abugaber et al., 2023; Baayen et al., 2018;167

Meulman et al., 2015, 2023). Their appeal for modelling M/EEG data lies in their ability168

to flexibly capture the complex shape of ERP waveforms without overfitting, through the use169

of smooth functions constrained by penalisation. Recent extensions, such as distributional170

GAMs (Rigby & Stasinopoulos, 2005; Umlauf et al., 2018), allow researchers to model not171

only the mean structure but also the variance (or scale) and other distributional properties as172

functions of predictors, a feature that has proven useful in modelling neuroimaging data (e.g.,173

Dinga et al., 2021). Moreover, hierarchical or multilevel GAMs (E. J. Pedersen et al., 2019)174

provide a principled way to account for the nested structure of M/EEG data (e.g., trials within175

participants), enabling the inclusion of varying intercepts, slopes, and smoothers (as illustrated176

in Figure 1C-D). This approach mitigates the risk of overfitting and reduces the influence of177

outliers on smooth estimates (Baayen & Linke, 2020; Meulman et al., 2023).178
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Figure 1

Different types of GAMs. A: GAMs predictions are computed as the weigthed sum (in black) of
basis functions (here thin-plate basis functions, in grey). B: Constant-effect GAM, with 5 par-
ticipants in colours and the group-level prediction in black. C: Varying-intercept + varying-slope
GAMM (with constant smoother). D: Varying-intercept + varying-slope + varying-smoother
GAMM. In this model, each participant gets its own intercept, slope, and degree of ‘wiggliness’
(smoother).

1.5 Objectives179

Cluster-based permutation tests are widely used in M/EEG research to identify statistically180

significant effects across time and space. However, these methods have notable limitations,181

particularly in accurately determining the precise onset and offset of neural effects. To address182

these limitations, we developed a model-based approach relying on Bayesian generalised ad-183

ditive multilevel models implemented in R via the brms package (Bürkner, 2017, 2018). We184

evaluated the performance of this approach against conventional methods using both simulated185

and actual M/EEG data. Our findings demonstrate that this method provides more precise and186

reliable estimates of effects’ onset and offset than conventional approaches such as cluster-based187

inference.188
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2 Benchmarking with known ground truth189

2.1 Methods190

2.1.1 M/EEG data simulation191

To assess the accuracy of group-level onset and offset estimation of our proposed method, we192

simulated EEG with known onset and offset values. Following the approach of Sassenhagen &193

Draschkow (2019) and Rousselet (2025), we simulated EEG data stemming from two conditions,194

one with noise only, and the other with noise + signal. As in previous studies, the noise195

was generated by superimposing 50 sinusoids at different frequencies, following an EEG-like196

spectrum (see code in the online supplementary materials and details in Yeung et al., 2004). As197

in Rousselet (2025), the signal was generated from a truncated Gaussian distribution with an198

objective onset at 160 ms, a peak at 250 ms, and an offset at 342 ms. We simulated this signal199

for 250 timesteps between 0 and 0.5s, akin to a 500 Hz sampling rate. We simulated data for a200

group of 20 participants (with variable true onset) with 50 trials per participant and condition201

(Figure 2). All figures and simulation results can be reproduced using the R code available202

online at: https://github.com/lnalborczyk/brms_meeg.203

Figure 2

Mean simulated EEG activity in two conditions with 50 trials each, for a group of 20 participants.
The error band represents the mean +/- 1 standard error of the mean.

https://github.com/lnalborczyk/brms_meeg
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2.1.2 Model description and model fitting204

We then fitted a Bayesian GAM (BGAM) using the brms package (Bürkner, 2017, 2018) and de-205

fault priors (i.e., weakly informative priors). We ran eight Markov Chain Monte-Carlo (MCMC)206

to approximate the posterior distribution, including each 5000 iterations and a warmup of 2000207

iterations, yielding a total of 8× (5000− 2000) = 24000 posterior samples to use for inference.208

Posterior convergence was assessed examining trace plots as well as the Gelman–Rubin statis-209

tic R̂ (Gabry et al., 2019; Gelman et al., 2020; Vehtari et al., 2021). The brms package uses210

the same syntax as the R package mgcv v 1.9-3 (Wood, 2017b) for specifying smooth effects.211

Figure 3 shows the predictions of this model together with the raw data.212

However, the model whose predictions are depicted in Figure 3 only included constant (fixed)213

effects, thus not properly accounting for between-participant variability. We next fitted a mul-214

tilevel version of the BGAM (BGAMM, for an introduction to Bayesian multilevel models in215

brms, see Nalborczyk et al., 2019) including a varying intercept and slope for participant (but216

with a constant smoother). Although it is possible to fit a BGAMM using data at the single-217

trial level, we present a computationally lighter version of the model that is fitted directly on218

by-participant summary statistics (mean and SD), similar to what is done in meta-analysis.219

We depict the posterior predictions together with the posterior estimate of the slope for220

condition at each timestep (Figure 3). This figure suggests that the BGAMM provides an ade-221

quate description of the simulated data (see further posterior predictive checks in Appendix B).222

Figure 3

Posterior estimate of the EEG activity in each condition (left) and posterior estimate of the
difference in EEG activity (right) according to the BGAMM.

We then compute the posterior probability of the slope for condition being above 0 (Figure 4,223

left). From this quantity, we compute the ratio of posterior probabilities (i.e., p/(1 − p)), or224

posterior odds, and visualise the timecourse of these odds superimposed with the conventional225

thresholds on evidence ratios (Figure 4, right). A ratio of 10 means that the probability of the226
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difference being above 0 is 10 times higher than the probability of the difference not being above227

0, given the data, the priors, and other model’s assumptions.1 Thresholding the posterior odds228

thus provides a model-based approach for estimating the onset and offset of M/EEG effects,229

whose properties will be assessed in the simulation study. An important advantage is that the230

proposed approach can be extended to virtually any model structure.231

Figure 4

Left: Posterior probability of the EEG difference (slope) being above 0 according to the BGAMM.
Right: Posterior odds according to the BGAMM (on a log10 scale). Timesteps above threshold
(10) are highlighted in green. NB: the minimum and maximum possible posterior odds are
determined (bounded) by the number of posterior samples in the model.

2.1.3 Comparing the onset/offset estimates across approaches232

We then compared the ability of the BGAM to accurately estimate the onset and offset of the233

ERP difference to other widely-used methods. First, we conducted mass univariate t-tests (thus234

treating each timestep independently) and identified the onset and offset of the ERP difference235

as the first and last values crossing an arbitrary significance threshold (α = 0.05). We then236

followed the same approach but after applying different forms of multiplicity correction to the237

p-values. We compared two methods that control the FDR (i.e., BH95, Benjamini & Hochberg,238

1995; and BY01, Benjamini & Yekutieli, 2001), one method that controls the FWER (i.e., Holm–239

Bonferroni method, Holm, 1979), and two cluster-based permutation methods (permutation240

with a single cluster-forming threshold and threshold-free cluster enhancement, TFCE, S. Smith241

& Nichols, 2009). The BH95, BY01, and Holm corrections were applied to the p-values using the242

p.adjust() function in R. The cluster-based inference was implemented using a cluster-sum243

statistic of squared t-values, as implemented in MNE-Python (Gramfort, 2013), called via the R244

package reticulate v 1.42.0 (Ushey et al., 2024). We also compared these estimates to the245

onset and offset estimated using the binary segmentation algorithm, as implemented in the R246

1These posterior odds are equivalent to a Bayes factor, assuming 1:1 prior odds.



BAYESIAN MODELLING OF M/EEG DATA 11

package changepoint v 2.3 (Killick et al., 2022), and applied directly to the squared t-values247

(as in Rousselet, 2025).2 Figure 5 illustrates the onsets and offsets estimated by each method248

on a single simulated dataset and shows that all methods systematically overestimate the true249

onset and underestimate the true offset. In addition, the Raw p-value, FDR BH95, and FDR250

BY01 methods identify clusters well before the true onset and after the true offset.251

Figure 5

Exemplary timecourse of squared t-values with true onset and offset (vertical black dashed lines)
and clusters identified using the raw p-values, the corrected p-values (BH95, BY01, Holm), the
cluster-based methods (Cluster mass, TFCE), or using the binary segmentation method (Change
point).

2.1.4 Simulation study252

To assess the accuracy of group-level onset and offset estimation, all methods were compared253

by computing the bias (defined as the mean difference between the estimated and true value of254

the onset/offset), mean absolute error (MAE), root mean square error (RMSE), and variance255

of onset/offset estimates from 10,000 simulated datasets. Following Rousselet (2025), each256

participant was assigned a random onset between 150 and 170ms. Whereas the present article257

focuses on one-dimensional signals (e.g., one M/EEG channel), we provide an application to 2D258

temporal data in Appendix A.259

2.2 Results260

Figure 6 shows a summary of the simulation results, revealing that the proposed approach (BGAM)261

has the lowest error for both the onset and offset estimates. The Cluster mass and Change262

pointmethods also have good performance, but perhaps surprisingly, the TFCEmethod performs263

2As in Rousselet (2025), we fixed the number of expected change points to two in the binary segmentation
algorithm, thus producing always one cluster.
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poorly for estimating the offset of the effect (with performance similar to the Holm method).264

Unsurprisingly, the FDR BH95 and Raw p-value methods show the worst performance.265

Figure 6

Mean error and variance of onset and offset estimates according to each method. Variance is
plotted on a log10 scale for visual purposes.

These results are further summarised in Table 1, which shows that the BGAM method is almost266

perfectly unbiased (i.e., it has a bias of approximately 0.1ms for the onset and 2.4ms for the267

offset). The Bias column shows that all methods tend to estimate the onset later than the true268

onset and to estimate the offset earlier than the true offset. As can be seen from this table, the269

BGAM method has the best performance on all included metrics (except for the Variance of the270

offset estimate, where the Change point method performs better, presumably because it was271

constrained to identifying a single cluster).272

3 Application to actual MEG data273

3.1 Methods274

To complement the simulation study, we evaluated the performance of all methods on actual275

MEG data (Nalborczyk et al., in preparation). In this study, the authors conducted time-276

resolved multivariate pattern analysis (MVPA, also known as decoding) of MEG data recorded277

in 32 human participants during a reading task. As a result, the authors obtained a timecourse of278

decoding accuracy (ROC AUC), bounded between 0 and 1, for each participant. To test whether279

the group-level average decoding accuracy was above chance (i.e., 0.5) at each timestep, we fitted280

a BGAM as introduced previously with a basis dimension k = 50 and retained all timesteps281

exceeding a posterior odds of 20. To better distinguish signal from noise, we defined a region of282
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Table 1

Summary statistics of onset/offset estimates for each method (in ms, ordered by the MAE).
Bias MAE RMSE Variance

onset

BGAM (our method) 0.11 2.76 0.11 28.78
Change point 5.17 6.51 5.17 33.58
Cluster mass 6.64 7.62 6.64 207.86
Holm 29.83 32.01 29.83 2,763.68
TFCE 29.73 32.07 29.73 2,823.11
FDR BY01 36.67 50.80 36.67 7,872.30
FDR BH95 58.64 102.49 58.64 19,054.58
Raw p-value 70.72 132.86 70.72 25,004.65

offset

BGAM (our method) -2.35 3.46 2.35 53.63
Cluster mass -8.64 9.44 8.64 193.63
Change point -9.28 9.82 9.28 33.03
Holm -31.86 34.03 31.86 2,764.12
TFCE -31.84 34.19 31.84 2,834.11
FDR BY01 -36.68 51.37 36.68 7,648.53
FDR BH95 -58.87 102.63 58.87 18,939.58
Raw p-value -72.93 133.33 72.93 25,012.72

practical equivalence (ROPE, Kruschke & Liddell, 2017) as the upper 90% quantile of decoding283

performance during the baseline period (i.e., before stimulus onset). Although we chose a basis284

dimension of k = 50, which seemed appropriate for the present data, this choice should be285

adapted according to the properties of the modelled data (e.g., signal-to-noise ratio, prior low-286

pass filtering, sampling rate) and should be assessed by the usual model checking tools (e.g.,287

models comparison, posterior predictive checks, see Appendix B).288

3.2 Results289

Figure 7 shows the group-level average decoding performance through time superimposed with290

onset and offset estimates from each method. Overall, this figure shows that both the Raw291

p-value and FDR BH95 methods are extremely lenient, identifying clusters of above-chance292

decoding accuracy before the onset of the stimulus (false positive) and until the end of the trial.293

The Change point method seems to be the most conservative one, identifying a single cluster294

spanning from approximately +60ms to +450ms. The Holm, Cluster mass, TFCE, and BGAM295

methods produce roughly similar estimates of onset and offset, ranging from approximately296

+60ms to +650ms (considering only the first and last identified timesteps), although the BGAM297

method seems to result in fewer clusters.298

We then assessed the sensitivity of all methods using a form of permutation-based sensitivity299

study, which consisted of the following steps. First, we created a large number of split halves300

of the data, that is, subsets of the dataset containing only 16 out of 32 participants. For each301

possible pair of subsets, we have 16 possible levels of overlap that can be quantified using the302

Jaccard index, ranging from 0 (perfectly disjoints subsets) to ≈ 0.88 (identical subsets except303

one participant). For each of these 16 levels of Jaccard similarity, we created 1,000 pairs of304
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Figure 7

Group-level average decoding performance through time with clusters of higher-than-chance de-
coding performance as identified by each method (data from Nalborczyk et al., in preparation).

subsets, resulting in 16,000 pairs of subsets in total. For each of these pairs, we estimated the305

onset and offset according to each method and computed the absolute difference in onset/offset306

estimates. Finally, we estimated the Spearman’s rank correlation coefficient (which quantifies307

the strength of a monotonic relation between two variables) between the Jaccard similarity308

and the absolute difference in onset/offset estimates. The rational for this procedure is that309

sensitive methods should produce similar onset/offset estimates for similar subsets and dissimilar310

onset/offset estimates for dissimilar subsets. The results of this procedure are summarised in311

Figure 8.312

This figure shows that, among the methods that performed best in the simulation study (i.e.,313

Cluster mass, Change point, and BGAM), onset estimates remain highly stable across subsets of314

participants with varying Jaccard similarity, it varies from around 1ms for most similar subsets315

to around 10ms for most dissimilar subsets. Additionally, for both onset and offset estimates,316

the average pairwise difference increases monotonically with Jaccard dissimilarity, as indicated317

by the Spearman’s rank correlation coefficient. For the onset estimates, the Holm, Cluster318

mass, TFCE, and BGAM methods exhibit the strongest monotonic relation with subset similarity319

(all ρs > 0.9), whereas for offset estimates, all methods demonstrate excellent performance (all320

ρs > 0.9) with the BGAM method showing the highest sensitivity (ρ ≈ 0.994). However, given321

the aberrant clusters identified by the Raw p-value, FDR BH95, and FDR BY01 methods (see322

Figure 7), their sensitivity to variation in subset similarity is not meaningful.323
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Figure 8

Relation between data subsets’ dissimilarity (x-axis) and difference in onset (blue) and offset
(orange) estimates (y-axis) according to each method.

4 Discussion324

In brief, our results show that the model-based approach we introduced outperforms conven-325

tional cluster-based methods in identifying the onset and offset of M/EEG effects. We first as-326

sessed the performance of this approach on simulated data, allowing us to evaluate the method’s327

ability to recover ground-truth onset and offset values. We then assessed its performance on328

actual MEG data, allowing us to assess its sensitivity to realistic data properties (subset simi-329

larity). Together, these results highlight desirable properties for any method aiming to precisely330

and reliably estimate the onset and offset of M/EEG effects: it should i) recover true onsets and331

offsets in simulation (good asymptotic behaviour), ii) identify clusters that are interpretable332

and consistent in empirical data, and iii) show sensitivity to subtle changes in the data. Our333

approach meets all three of these desiderata.334

As with previous simulation studies (e.g., Rousselet et al., 2008; Sassenhagen & Draschkow,335

2019), results inevitably depend on design choices, including the specific cluster-forming algo-336

rithm and threshold (for cluster-based methods), the signal-to-noise ratio, and the potential337

degradation of temporal resolution introduced by preprocessing steps such as low-pass filter-338

ing. However, these constraints apply equally to all methods tested, so relative differences in339

performance remain meaningful.340

Interestingly, the TFCE method performed worse than the traditional cluster-sum approach,341

consistent with the predictions of Rousselet (2025) based on the original findings of S. Smith342

& Nichols (2009). We also found a striking overlap in the clusters identified by the Holm and343
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TFCE procedures (cf. Figure 7 and Figure 8). Whereas these two approaches are conceptually344

distinct; Holm controlling the family-wise error rate through sequential p-value adjustment, TFCE345

enhancing signal based on spatiotemporal support; their similarity in practice may arise because346

both effectively prioritise extended, moderately strong effects over isolated high-intensity points.347

This convergence warrants further methodological work.348

A critical requirement for any model-based approach is that the model must adequately capture349

the underlying data-generating process. Misspecified models are likely to produce biased or un-350

reliable onset/offset estimates. This underscores the importance of thorough model diagnostics,351

including posterior predictive checks, fit assessments, and model comparison (Gelman et al.,352

2020). An important and related methodological consideration concerns the selection of model353

hyperparameters, such as the number of basis functions and the threshold for posterior odds.354

Although our simulations suggest that these parameters influence the precision and reliabil-355

ity of onset and offset estimates, optimal values may vary depending on the signal’s temporal356

dynamics and signal-to-noise characteristics. Future work could explore principled approaches357

to hyperparameter tuning, including cross-validation or fully Bayesian model selection using358

tools such as leave-one-out cross-validation (LOO-CV) or Bayes factors (Gelman et al., 2020).359

We provide initial guidance in Appendix B and advocate for future development of adaptive360

heuristics to support flexible yet parsimonious model specification.361

Currently, our approach estimates temporal effects independently at each sensor (1D temporal362

data). Extending the current framework to incorporate additional temporal (see Appendix A)363

or spatial dimensions would improve both sensitivity and interpretability. Such extensions364

could draw on methods from spatial epidemiology and geostatistics using either GAMMs or365

approximate Gaussian process regression (e.g., Rasmussen & Williams, 2005; Riutort-Mayol et366

al., 2023), depending on computational feasibility.367

To facilitate adoption, we developed the neurogram open-source R package (Nalborczyk, 2025),368

which implements the proposed method using brms. The package integrates seamlessly with369

MNE-Python (Gramfort, 2013), enabling researchers to process M/EEG data in Python and370

import them directly into R for model-based inference without cumbersome data export. This371

interoperability, described in Appendix C, is designed to encourage broader use of model-based372

approaches in cognitive neuroscience.373

In conclusion, we introduced a model-based approach for estimating the onset and offset of374

M/EEG effects. Across simulated and empirical datasets, we showed that the method yields375

more precise and sensitive estimates than conventional cluster-based approaches. These results376

highlight the potential of flexible, model-based alternatives for characterising time-resolved neu-377

ral dynamics, particularly in applications where accurate temporal localisation is critical.378
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Data and code availability379

The simulation results as well as the R code to reproduce the simulations are available at:380

https://github.com/lnalborczyk/brms_meeg. The neurogam R package is available at https:381

//github.com/lnalborczyk/neurogam.382

Packages383

We used R version 4.4.3 (R Core Team, 2025) and the following R packages: assertthat v. 0.2.1384

(Wickham, 2019), brms v. 2.22.0 (Bürkner, 2017, 2018, 2021), doParallel v. 1.0.17 (Corporation385

& Weston, 2022), foreach v. 1.5.2 (Microsoft & Weston, 2022), furrr v. 0.3.1 (Vaughan &386

Dancho, 2022), future v. 1.58.0 (Bengtsson, 2021), ggpubr v. 0.6.0 (Kassambara, 2023), ggrepel387

v. 0.9.6 (Slowikowski, 2024), glue v. 1.8.0 (Hester & Bryan, 2024), grateful v. 0.2.12 (Rodriguez-388

Sanchez & Jackson, 2024), gt v. 1.0.0 (Iannone et al., 2025), knitr v. 1.50 (Xie, 2014, 2015,389

2025), MetBrewer v. 0.2.0 (Mills, 2022), mgcv v. 1.9.3 (Wood, 2003b, 2004, 2011, 2017c; Wood390

et al., 2016), neurogam v. 0.0.1 (Nalborczyk, 2025), pakret v. 0.2.2 (Gallou, 2024), patchwork391

v. 1.3.0 (T. L. Pedersen, 2024), rmarkdown v. 2.29 (Allaire et al., 2024; Xie et al., 2018, 2020),392

scales v. 1.4.0 (Wickham et al., 2025), scico v. 1.5.0 (T. L. Pedersen & Crameri, 2023), signal v.393

1.8.1 (signal developers, 2023), tictoc v. 1.2.1 (Izrailev, 2024), tidybayes v. 3.0.7 (Kay, 2024),394

tidytext v. 0.4.2 (Silge & Robinson, 2016), tidyverse v. 2.0.0 (Wickham et al., 2019).395
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Appendix A
Application to 2D time-resolved decoding results (cross-temporal generalisation)

We conducted a cross-temporal generalisation analysis of the decoding data from Nalborczyk633

et al. (in preparation), in which we assessed the performance of classifiers trained and tested634

at various timesteps of the trial (King & Dehaene, 2014). This analysis was performed at the635

participant level, resulting in a 2D matrix where each element contains the decoding accuracy636

(ROC AUC) of a classifier trained at timestep trainingi and tested at timestep testingj for each637

participant (Figure A1).638

Figure A1

Group-level average cross-temporal generalisation matrix of decoding performance (data from
Nalborczyk et al., in preparation).

To model cross-temporal generalisation matrices of decoding performance, we extended our639

initial BGAM to take into account the bivariate temporal distribution of AUC values, thus640

producing naturally smoothed estimates (timecourses) of AUC values and posterior odds. This641

model can be written as follows:642

AUCi ∼ Beta (µi, ϕ)

logit (µi) = α+ f (traini, testi)

f (traini, testi) ≡
K∑
k=1

bkBk (traini, testi)

where AUC values are assumed to follow a Beta distribution, parametrised by a mean µi and643

a precision parameter ϕ. The mean µi is linked to the predictors through a logit link function.644

The smooth function f(traini, testi) represents a two-dimensional surface defined over training645

and testing times, which captures how decoding performance varies across the temporal gen-646
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eralisation matrix. This surface is approximated by a linear combination of K basis functions647

Bk(·, ·), each weighted by a coefficient bk. The basis functions are constructed using a tensor648

product of univariate splines (here thin-plate splines) applied to the training and testing time649

dimensions (Wood, 2003a, 2017a).650

We fitted this model using brms and the t2() tensor product smooth constructor with full651

penalties (E. J. Pedersen et al., 2019; Wood, 2017a). We ran eight MCMCs to approximate the652

posterior distribution, including each 5000 iterations and a warmup of 1000 iterations, yielding653

a total of 8× (5000− 1000) = 32000 posterior samples to be used for inference.654

# fitting a GAM with two temporal dimensions
timegen_gam <- brm(

# 2D thin-plate spline (tp) with full penalties
auc ~ t2(train_time, test_time, bs = "tp", k = 30, full = TRUE),
data = timegen_data,
family = Beta(),
warmup = 1000,
iter = 5000,
chains = 8,
cores = 8,
control = list(adapt_delta = 0.95, max_treedepth = 15)
)

Figure A2

Predicted AUC values with threshold (left) and posterior odds of decoding accuracy being above
chance (right) according to the bivariate BGAM.

Figure A2 shows the predictions from the model (left) superimposed with the identified cluster655

as defined by thresholding the posterior odds (right). Notably, this model could be extended to656

a multilevel bivariate GAM via t2(train_time, test_time, participant, bs = c("tp",657
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"tp", "re"), m = 2, full = TRUE) and could be generalised to account for both spatial (x658

and y) and temporal (time) dimensions with formulas such as te(x, y, time, d = c(2, 1)659

).660
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Table B1

Models comparison with LOOIC. Models are arranged by the diffence in expected log-pointwise
density (ELPD) to the best model (i.e., k=40).
k elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic

40 0.00 0.00 5,579.11 69.47 47.79 0.74 -11,158.21 138.94
80 -0.63 0.38 5,578.47 69.48 50.30 0.78 -11,156.94 138.97
20 -6.43 3.38 5,572.68 69.59 36.99 0.58 -11,145.35 139.17
10 -36.12 8.85 5,542.98 69.88 19.29 0.32 -11,085.97 139.76
5 -1,605.12 53.40 3,973.99 71.54 11.13 0.19 -7,947.98 143.09

Appendix B
How to choose the GAM basis dimension?

There is no universal recommendation for choosing the optimal value of k, as it depends on661

several factors, including the sampling rate, preprocessing steps (e.g., signal-to-noise ratio, low-662

pass filtering), and the underlying neural dynamics of the phenomenon under investigation. One663

strategy is to set k as high as computational constraints allow, as suggested by previous authors664

(e.g., E. J. Pedersen et al., 2019). Alternatively, one can fit a series of models with different665

k values and compare them using information criteria such as LOOIC or WAIC, alongside666

posterior predictive checks (PPCs), to select the model that best captures the structure of the667

data. We illustrate this approach below.668

Figure B1 presents the posterior predictions and two forms of posterior predictive checks (PPCs)669

for each GAM fit using different numbers of basis functions (k ∈ {5, 10, 20, 40, 80}). With670

the exception of the k = 5 model, all other fits yield satisfactory PPCs, indicating that the671

predicted data closely resemble the empirical observations. However, model comparison using672

the leave-one-out information criterion (LOOIC), as summarised in Table 1, identifies the k = 40673

model as the best-performing one in terms of LOOIC, closely followed by the k = 80 model.674

This suggests that the optimal number of basis functions likely lies between these two values.675

Future simulation studies could further investigate how such model selection criteria relate to676

the precision of onset and offset estimates.677
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Figure B1

Posterior predictions and posterior predictive checks for the GAM with varying k (in rows).



Appendix C
R package and integration with MNE-Python

For readers who are already familiar with brms, the recommended pipeline is to use the code678

provided in the main paper (available at https://github.com/lnalborczyk/brms_meeg). It is679

also possible to call functions from the neurogam R package (available at https://github.com/680

lnalborczyk/neurogam) which come with sensible defaults.681

# installing (if needed) and loading the neurogam R package
# remotes::install_github("https://github.com/lnalborczyk/neurogam")
library(neurogam)

# using the testing_through_time() function from the neurogam package
# this may take a few minutes (or hours depending on the machine's
# performance and the size of the dataset)...
gam_onset_offset <- testing_through_time(

# dataframe with M/EEG data in long format
data = df,
# the *_id arguments are used to specify the relevant columns in data
participant_id = "participant", meeg_id = "eeg",
time_id = "time", predictor_id = "condition",
# posterior odds threshold for defining clusters (20 by default)
threshold = 20,
# number of warmup MCMC iterations
warmup = 1000,
# total number of MCMC iterations
iter = 5000,
# number of MCMCs
chains = 4,
# number of parallel cores to use for running the MCMCs
cores = 4
)

# displaying the results
gam_onset_offset$clusters

The neurogam package can also be called from Python using the rpy2 module, and can easily be682

integrated into MNE-Python pipelines. For example, we use it below to estimate the onset and683

offset of effects for one EEG channel from an MNE evoked object. The code used to reshape684

the sample MNE dataset is available in the online supplementary materials, and we further refer685

to the MNE documentation about converting MNE epochs to Pandas dataframes in long format686

(i.e., with one observation per row).687

https://github.com/lnalborczyk/brms_meeg
https://github.com/lnalborczyk/neurogam
https://github.com/lnalborczyk/neurogam
https://github.com/lnalborczyk/neurogam
https://mne.tools/stable/auto_tutorials/epochs/50_epochs_to_data_frame.html
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# loading the Python modules
import rpy2.robjects as robjects
from rpy2.robjects.packages import importr
from rpy2.robjects import pandas2ri
from rpy2.robjects.conversion import localconverter

# importing the "neurogam" R package
neurogam = importr("neurogam")

# activating automatic pandas-R conversion
# pandas2ri.activate()

# assuming reshaped_df is some M/EEG data reshaped in long format
with localconverter(robjects.default_converter + pandas2ri.converter):

reshaped_df_r = robjects.conversion.py2rpy(reshaped_df)

# using the testing_through_time() function from the neurogam R package
gam_onset_offset = neurogam.testing_through_time(

data=reshaped_df_r,
threshold=20,
multilevel=False
)

# displaying the results
print(list(gam_onset_offset) )
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