Ce livret est en "Open Review". Votre retour est essentiel afin de l'améliorer, pour vous-même ainsi que pour les futurs étudiant•e•s. Vous pouvez annoter le texte en le sélectionnant avec le curseur et en cliquant sur l'icône dans le menu qui s'affiche en pop-up. Vous pouvez également lire les annotations des autres utilisateurs du livret en cliquant sur dans le coin supérieur droit de cette page.


Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., & Iannone, R. (2020). Rmarkdown: Dynamic documents for r. https://CRAN.R-project.org/package=rmarkdown
Aust, F., & Barth, M. (2020). Papaja: Prepare reproducible APA journal articles with r markdown. https://github.com/crsh/papaja
Blitzstein, J. K., & Hwang, J. (2019). Introduction to probability (Second edition). Taylor & Francis.
Bürkner, P.-C. (2020). Brms: Bayesian regression models using ’stan’. https://CRAN.R-project.org/package=brms
Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261–304. https://doi.org/10.1177/0049124104268644
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed). Springer.
Campbell, D. T. (1990). The Meehlian Corroboration-Verisimilitude Theory of Science. Psychological Inquiry, 1(2), 142–147. https://www.jstor.org/stable/1448769
Carnap, R. (1950). Logical Foundations of Probability. Chicago]University of Chicago Press.
Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997–1003. https://doi.org/10.1037/0003-066X.49.12.997
Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966
Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. (New York:).
Dekking, M. (Ed.). (2005). A modern introduction to probability and statistics: Understanding why and how. Springer.
Fidler, F., Thorn, F. S., Barnett, A., Kambouris, S., & Kruger, A. (2018). The Epistemic Importance of Establishing the Absence of an Effect: Advances in Methods and Practices in Psychological Science. https://doi.org/10.1177/2515245918770407
Gelman, A., Carlin, J. B., Stern, H., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis, third edition. CRC Press, Taylor & Francis Group.
Gelman, A., & Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics: Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and Statistical Psychology, 66(1), 8–38. https://doi.org/10.1111/j.2044-8317.2011.02037.x
Gigerenzer, G. (1993). The superego, the ego, and the id in statistical reasoning. In A handbook for data analysis in the behavioral sciences: Methodological issues (pp. 311–339). Lawrence Erlbaum Associates, Inc.
Hájek, A. (2019). Interpretations of probability. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Fall 2019). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2019/entries/probability-interpret/
Hanck, C., Arnold, M., Gerber, A., & Schmelzer, M. (2018). Introduction to Econometrics with R. https://www.econometrics-with-r.org/
Jaynes, E. T. (1986, November). Bayesian Methods: General Background. Maximum Entropy and Bayesian Methods in Applied Statistics: Proceedings of the Fourth Maximum Entropy Workshop University of Calgary, 1984. https://doi.org/10.1017/CBO9780511569678.003
Judd, C. M., McClelland, G. H., & Ryan, C. S. (2009). Data analysis: A model comparison approach, 2nd ed. Routledge/Taylor & Francis Group.
Keynes, J. M. (1921). A Treatise On Probability. Macmillan And Co.,. http://archive.org/details/treatiseonprobab007528mbp
Kolmogorov, A. N. (1933). Foundations of the theory of probability. New York, USA: Chelsea Publishing Company.
Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd Edition). Academic Press.
Kruschke, J. K., & Liddell, T. M. (2018a). Bayesian data analysis for newcomers. Psychonomic Bulletin & Review, 25(1), 155–177. https://doi.org/10.3758/s13423-017-1272-1
Kruschke, J. K., & Liddell, T. M. (2018b). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25(1), 178–206. https://doi.org/10.3758/s13423-016-1221-4
Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence Testing for Psychological Research: A Tutorial: Advances in Methods and Practices in Psychological Science. https://doi.org/10.1177/2515245918770963
Lindley, D. V. (2001). The Philosophy of Statistics. Journal of the Royal Statistical Society: Series D (The Statistician), 49(3), 293–337. https://doi.org/10.1111/1467-9884.00238
McElreath, R. (2016a). Rethinking: Statistical rethinking book package.
McElreath, R. (2016b). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC Press/Taylor & Francis Group.
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (2nd ed.). Taylor; Francis, CRC Press.
Meehl, Paul E. (1990a). Appraising and amending theories: The strategy of Lakatosian defense and two principles that warrant It. Psychological Inquiry, 1(2), 108–141. https://doi.org/10.1207/s15327965pli0102_1
Meehl, Paul E. (1967). Theory-testing in Psychology and Physics: A methodological paradox. Philosophy of Science, 34(2), 103–115. https://doi.org/10.1086/288135
Meehl, Paul E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology, 46(4), 806–834. https://doi.org/10.1037/0022-006X.46.4.806
Meehl, P. E. (1986). What Social Scientists Don’t Understand. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (p. 24). Chicago: University of Chicago Press.
Meehl, Paul E. (1990b). Why Summaries of Research on Psychological Theories are Often Uninterpretable. Psychological Reports. https://doi.org/10.2466/pr0.1990.66.1.195
Meehl, Paul E. (1997). The problem is epistemology, not statistics: Replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions. What If There Were No Significance Tests?, 393–425. http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=72FF987997EFB5F0602B02E1A2E04E40?doi=
Morey, R. D., Homer, S., & Proulx, T. (2018). Beyond Statistics: Accepting the Null Hypothesis in Mature Sciences: Advances in Methods and Practices in Psychological Science. https://doi.org/10.1177/2515245918776023
Noël, Y. (2015). Psychologie statistique avec R. EDP SCIENCES.
Pollard, P., & Richardson, J. T. (1987). On the probability of making Type I errors. Psychological Bulletin, 102(1), 159–163. https://doi.org/10.1037/0033-2909.102.1.159
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence between two experimental groups. Psychological Bulletin, 113(3), 553–565. https://doi.org/10.1037/0033-2909.113.3.553
Rouder, J. N., Morey, R. D., & Wagenmakers, E.-J. (2016). The Interplay between Subjectivity, Statistical Practice, and Psychological Science. Collabra, 2(1), 6. https://doi.org/10.1525/collabra.28
Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLOS Biology, 15(3), e2000797. https://doi.org/10.1371/journal.pbio.2000797
Talbot, M. (2015). Critical Reasoning: A Romp through the Foothills of Logic for the Complete Beginner (C. Wood, Ed.; 1 edition). CreateSpace Independent Publishing Platform.
Wickham, H. (2019). Tidyverse: Easily install and load the ’tidyverse’. https://CRAN.R-project.org/package=tidyverse
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., & Yutani, H. (2019). ggplot2: Create elegant data visualisations using the grammar of graphics. https://CRAN.R-project.org/package=ggplot2
Xie, Y. (2020a). Bookdown: Authoring books and technical documents with r markdown. https://CRAN.R-project.org/package=bookdown
Xie, Y. (2020b). Knitr: A general-purpose package for dynamic report generation in r. https://CRAN.R-project.org/package=knitr